Published online by Cambridge University Press: 19 May 2011
Can the output of human cognition be predicted from the assumption that it is an optimal response to the information-processing demands of the environment? A methodology called rational analysis is described for deriving predictions about cognitive phenomena using optimization assumptions. The predictions flow from the statistical structure of the environment and not the assumed structure of the mind. Bayesian inference is used, assuming that people start with a weak prior model of the world which they integrate with experience to develop stronger models of specific aspects of the world. Cognitive performance maximizes the difference between the expected gain and cost of mental effort. (1) Memory performance can be predicted on the assumption that retrieval seeks a maximal trade-off between the probability of finding the relevant memories and the effort required to do so; in (2) categorization performance there is a similar trade-off between accuracy in predicting object features and the cost of hypothesis formation; in (3) casual inference the trade-off is between accuracy in predicting future events and the cost of hypothesis formation; and in (4) problem solving it is between the probability of achieving goals and the cost of both external and mental problem-solving search. The implemention of these rational prescriptions in neurally plausible architecture is also discussed.