Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-11T03:10:04.043Z Has data issue: false hasContentIssue false

Neurophysiology of compensation for time delays: Visual prediction is off track

Published online by Cambridge University Press:  14 May 2008

Gopathy Purushothaman
Affiliation:
Department of Cell and Developmental Biology, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37232; gopathy.purushothaman@vanderbilt.edu
Harold E. Bedell
Affiliation:
College of Optometry and Center for Neuro-Engineering and Cognitive Science, University of Houston, Houston, TX 77204-2020; Hbedell@optometry.uh.edu
Haluk Öğmen
Affiliation:
Department of Electrical and Computer Engineering, Center for Neuro-Engineering and Cognitive Science, University of Houston, Houston, TX 77204-4005; ogmen@uh.eduhttp://www.egr.uh.edu/ece/faculty/ogmen/
Saumil S. Patel
Affiliation:
Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX-77030. saumil@swbell.net

Abstract

Speculation by Nijhawan that visual perceptual mechanisms compensate for neural delays has no basis in the physiological properties of neurons known to be involved in motion perception and visuomotor control. Behavioral and physiological evidence is consistent with delay compensation mediated primarily by motor systems.

Type
Open Peer Commentary
Copyright
Copyright ©Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bahill, A. T. & LaRitz, T. (1984) Why can't batters keep their eyes on the ball? American Scientist 72:249–53.Google Scholar
Bahill, A. T. & McDonald, J. D. (1983) Smooth pursuit eye movements in response to predictable target motions. Vision Research 23:1573–83.Google Scholar
Barnes, G. R., Barnes, D. M. & Chakraborti, S. R. (2000) Ocular pursuit responses to repeated, single-cycle sinusoids reveal behavior compatible with predictive pursuit. Journal of Neurophysiology 84:2340–55.CrossRefGoogle ScholarPubMed
Berry, M. J., Brivanlou, I. H., Jordan, T. A. & Meister, M. (1999) Anticipation of moving stimuli by the retina. Nature 398(6725):334–38.Google Scholar
Britten, K. H. (2004) The middle temporal area: Motion processing and the link to perception. In: Visual neurosciences, ed. Chalupa, L. M. & Werner, J. S.. MIT Press.Google Scholar
Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. (1996) A relationship between behavioral choice and the visual responses of neurons in macaque MT. Visual Neuroscience 13:87100.CrossRefGoogle ScholarPubMed
Bruce, C. J., Friedman, H. R., Kraus, M. S. & Stanton, G. B. (2004) The primate frontal eye field. In: Visual neurosciences, ed. Chalupa, L. M. & Werner, J. S.. MIT Press.Google Scholar
Carpenter, R. H. S. (1988) Movements of the eyes, 2nd edition. Pion Press.Google Scholar
Chung, S. T. L., Patel, S. S., Bedell, H. E. & Yilmaz, O. (2007) Spatial and temporal properties of the illusory motion-induced position shift for drifting stimuli. Vision Research 47:231–43.Google Scholar
De Valois, R. L., & De Valois, K. K. (1991) Vernier acuity with stationary moving Gabors. Vision Research 31(9):1619–26.Google Scholar
Duhamel, J.-R., Colby, C. L. & Goldberg, M. E. (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:9092.CrossRefGoogle ScholarPubMed
Fukushima, K., Yamanobe, T., Shinmei, Y. & Fukushima, J. (2002) Predictive responses of periarcuate pursuit neurons to visual target motion. Experimental Brain Research 145(1):104–20.CrossRefGoogle ScholarPubMed
Gottlieb, J. P., Bruce, C. J. & MacAvoy, M. G. (1993) Smooth eye movements elicited by microstimulation in the primate frontal eye field. Journal of Neurophysiology 69:786–99.Google ScholarPubMed
Gottlieb, J. P., MacAvoy, M. G. & Bruce, C. J. (1994) Neural responses related to smooth pursuit eye movements and their correspondence with electrically elicited slow eye movements in the primate frontal eye field. Journal of Neurophysiology 72:1634–53.CrossRefGoogle Scholar
Gottsdanker, R. M. (1952) The accuracy of prediction motion. Journal of Experimental Psychology 43:2636.CrossRefGoogle ScholarPubMed
Keating, E. G. (1991) Frontal eye field lesions impair predictive and visually guided pursuit eye movements. Experimental Brain Research 86:311–23.CrossRefGoogle ScholarPubMed
Kerzel, D. & Gegenfurtner, K. R. (2003) Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Current Biology 13(22):1975–78.Google Scholar
Komatsu, H. & Wurtz, R. H. (1988) Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. Journal of Neurophysiology 60:580603.CrossRefGoogle ScholarPubMed
Krekelberg, B. & Lappe, M. (1999) Temporal recruitment along the trajectory of moving objects and the perception of position. Vision Research 39:2669–79.CrossRefGoogle ScholarPubMed
Land, M. F. & Furneaux, S. (1997) The knowledge base of the oculomotor system. Philosophical Transactions of the Royal Society of London B 352:1231–39.CrossRefGoogle ScholarPubMed
Land, M. F. & McLeod, P. (2000) From eye movements to actions: how batsmen hit the ball. Nature Neuroscience 3(12):1340–45.CrossRefGoogle ScholarPubMed
Lisberger, S. G. & Movshon, J. A. (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. Journal of Neuroscience 19:2224–46.CrossRefGoogle ScholarPubMed
Liu, J. & Newsome, W. T. (2005) Correlation between speed perception and neural activity in the middle temporal visual area. Journal of Neuroscience 25:711–22.CrossRefGoogle ScholarPubMed
MacAvoy, M. G., Gottlieb, J. P. & Bruce, C. J. (1991) Smooth pursuit eye movement representation in the primate frontal eye field. Cerebral Cortex 1:95102.CrossRefGoogle ScholarPubMed
Maus, G. W. & Nijhawan, R. (2006) Forward displacements of fading objects in motion: The role of transient signals in perceiving position. Vision Research 46(26):4375–81.CrossRefGoogle ScholarPubMed
Nakamura, K. & Colby, C. L. (2002) Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proceedings of the National Academy of Sciences of the USA 99:4026–31.CrossRefGoogle ScholarPubMed
Newsome, W. T. & Paré, E. B. (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience 8:2201–11.CrossRefGoogle ScholarPubMed
Newsome, W. T., Wurtz, R. H. & Komatsu, H. (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. Journal of Neurophysiology 60:604–20.Google Scholar
Nichols, M. J. & Newsome, W. T. (2002) Middle temporal visual area microstimulation influences veridical judgments of motion direction. Journal of Neuroscience 22:9530–40.Google Scholar
Nijhawan, R. (1994) Motion extrapolation in catching. Nature 370(6487):256–57.Google Scholar
Nijhawan, R. (2001) The flash-lag phenomenon: object-motion and eye-movements. Perception 30:263–82.CrossRefGoogle ScholarPubMed
Öğmen, H., Patel, S. S., Bedell, H. E. & Camuz, K. (2004) Differential latencies and the dynamics of the position computation process for moving targets, assessed with the flash-lag effect. Vision Research 44:2109–28.CrossRefGoogle ScholarPubMed
Patel, S. S., Öğmen, H., Bedell, H. E. & Sampath, V. (2000) Flash-lag effect: Differential latency, not postdiction. Science 290:1051.Google Scholar
Purushothaman, G. & Bradley, D. C. (2005) Neural population code for fine perceptual decisions in area MT. Nature Neuroscience 8:99106.Google Scholar
Purushothaman, G., Patel, S. S., Bedell, H. E. & Öğmen, H. (1998) Moving ahead through differential visual latency. Nature 396(6710):424.CrossRefGoogle ScholarPubMed
Ramachandran, V. S. & Anstis, S. M. (1990) Illusory displacement of equiluminous kinetic edges. Perception 19(5):611–16.CrossRefGoogle ScholarPubMed
Salzman, C. D., Britten, K. H. & Newsome, W. T. (1990) Cortical microstimulation influences perceptual judgments of motion direction. Nature 346:174–77.CrossRefGoogle Scholar
Salzman, C. D., Murasugi, C. M., Britten, K. H. & Newsome, W. T. (1992) Microstimulation in visual area MT: Effects on direction discrimination performance. Journal of Neuroscience 12:2331–55.CrossRefGoogle ScholarPubMed
Schall, J. D. (2004) Selection of targets for saccadic eye movements. In: Visual neurosciences, ed. Chalupa, L. M. & Werner, J. S.. MIT Press.Google Scholar
Tanaka, K. & Fukushima, K. (1998) Neuronal responses related to smooth pursuit eye movements in the periarcuate cortical area of monkeys. Journal of Neurophysiology 80:2847.CrossRefGoogle ScholarPubMed