Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T03:40:52.631Z Has data issue: false hasContentIssue false

On neural mechanisms for muscle and reflex partitioning

Published online by Cambridge University Press:  04 February 2010

C. C. A. M. Gielen
Affiliation:
Department of Medical Physics and Biophysics, University of Nijmegen, NL 6525 EZ Nimegen, The Netherlands

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Letters “a” and “r” appearing before authors' initials refer to target article and response respectively.Google Scholar
Abbs, J. H. & Cole, K. J. (1982) Consideration of bulbar and suprabulbar afferent influences upon speech motor coordination and programming. In: Speech motor control, ed. Grillner, S., Lindblom, H., Lubker, J. & Persson, A.. Pergamon Press. [JHA]Google Scholar
Abbs, J. H., Gracco, V. L. & Blair, C. (1984) Functional muscle partitioning during voluntary movement: Facial muscle activity for speech. Experimental Neurology 85:469–79. [aUW]CrossRefGoogle ScholarPubMed
Abraham, L. D. & Loeb, C. E. (1985) The distal hindlimb musculature of the cat. Patterns of normal use. Experimental Brain Research 58:580–93. [LJ]CrossRefGoogle ScholarPubMed
Abrahams, V. C. (1977) The physiology of neck muscles: Their role in head movement and maintenance of posture. Canadian journal of Physiology and Pharmacology 55:332–38. [aUW]CrossRefGoogle ScholarPubMed
Abrahams, V. C., Richmond, F. J. B. & Rose, P. K. (1975) Absence of monosynaptic reflex in dorsal neck muscles of the cat. Brain Research 92:130–31. [rUW, GEL]CrossRefGoogle ScholarPubMed
Agarwal, C. C. & Gottlieb, C. L (1985) Mathematical modeling and simulation of the postural control loop, part III. CRC Critical Reviews of Biomedical Engineering 12:4993. [aUW]Google Scholar
Allum, J. H. J., Dietz, V. & Freund, H.-J. (1978) Neuronal mechanisms underlying physiological tremor. journal of Neurophyswlogy 41:557–71. [aUW]CrossRefGoogle ScholarPubMed
Appelberg, B., Hulliger, M., Johansson, H. & Sojka, P.Actions on γmotoneurones elicited by electrical stimulation of group III muscle afferent fibres in the hind limb of the cat. Journal of Physiology (London) 335:275–92. [HJ]CrossRefGoogle Scholar
Appelberg, B., Johansson, H. & Sojka, P. (1986) Fusimotor reflexes in triceps surae muscle elicited by stretch of muscles in the contralateral hind limb of the cat. Journal of Physiology (London) 373:419–41. [HJ]CrossRefGoogle ScholarPubMed
Appenteng, K., O'Donovan, M. J., Somjen, G., Stephens, J. A. & Taylor, A. (1978) The projection of jaw elevator muscle spindle afferent to fifth nerve motoneurones in the cat. journal of Physiology (London) 279:409–23. [AT]CrossRefGoogle ScholarPubMed
Ariano, M. A., Amstrong, H. B. & Edgerton, B. H. (1972) Hindlimb muscle fiber populations of five mammals. journal of Histochemistry and Cytochesnistry 21:5155. [AM]CrossRefGoogle Scholar
Armstrong, J. B., Rose, P. K., Vanner, S.Bakker, C. J. & Richmond, F. J. H. (1988) Compartmentalization of motor units in the cat neck muscle, biventer cervicis. journal of Neurophysiology 60:3045. [aUW]CrossRefGoogle ScholarPubMed
Armstrong, R. B. (1980) Properties and distribution of fiber types in the locomotory muscles of mammals. In: Comparative physiology: Primitive mammals, ed. Schmidt-Nielson, K., Bolis, L. & Taylor, C. R.. Cambridge University Press. [aUW]Google Scholar
Athans, M., ed. (1971) Linear quadratic estimation and control problems. IEEE Transactions on Automatic Control, Special Issue AC-16. [GEL]CrossRefGoogle Scholar
Baldissera, F., Hultbom, H. & Illert, M. (1981) Integration in spinal neuronal systems. In: Handbook of physiology, sec. 1, The nervous system, vol. 2, Motor control, part 1, ed. Brooks, V. B.. American Physiological Society. [aUW, AWE]Google Scholar
Ball, E. E., Ho, R. K. & Goodman, C. S. (1985) Muscle development in the grasshopper embryo. 1. Muscles, nerves, and apodemes in the metathoracic leg. Developmental Biology 111:383–98. [FD]CrossRefGoogle Scholar
Barker, D., Emonet-Dénand, F., Harker, D. W., Jami, L. & Laporte, Y. (1977) Types of intra-and extrafusal muscle fibre innervated by dynamic skeleto-fusimotor axons in cat peroneus brevis and tenuissimus muscles, as determined bu the glycogen-deplction method. journal of Physiology 266:713726. [LG]CrossRefGoogle Scholar
Bässler, U. (1983) The neural basis of catalepsy in the stick insect Cuniculina impigra. 3. Characteristics of the extensor motor neurons. Biological Cybernetics 46:159–65. [UB]CrossRefGoogle Scholar
Bawa, P., Binder, M. D., Ruenzel, P. & Henneman, E. (1984) Recruitment of inotoneurons in stretch reflexes is highly correlated with their axonal conduction velocity, journal of Ncurophysiology 52:410–20. [aUW]CrossRefGoogle ScholarPubMed
Bennett, M. R. & Ho, S. (1988) The formation of topographical maps in developing rat gaatrocnemius muscle during synapse elimination. Journal of Physiology (London) 396:471–96. [aUW, AWE]CrossRefGoogle ScholarPubMed
Benninghoff, A. & Rollhäuser, H. (1952) Zur inneren Mechanik des gefiederten Muskels. Pflügers Archiv cier gesamten Physiologic 254:527–48. [aUW]CrossRefGoogle Scholar
Beritoff, J. (1925) Uber die Kontraktionsfahigkeit der Skelettmuskeln, IV: Uber die physiologische Bedeutung des geflederten Baues der Muskeln. Pflügers Archiv der gesamlen Physiologic 209:763–78. [aUW]CrossRefGoogle Scholar
Bessou, P. & Laporte, Y. (1962) Responses from primary and secondary endings of the same neuromuscular spindle of the tenuissimus muscle of the cat. In: Symposium on muscle receptors, ed Barker, D.. Hong Kong University Press. [LJ]Google Scholar
Bilotto, C., Schor, R. H., Uchino, Y. & Wilson, V. J. (1982) Localization of proprioceptive reflexes in the splenius muscle of the cat. Brain Research 238:217–21. [arUW, SCG]CrossRefGoogle ScholarPubMed
Binder, M. D., Kroin, J. S., Moore, G. P., Stauffer, E. K. & Stuart, D. C. (1976) Correlation analysis of muscle spindle responses to single motor unit contractions, journal of Physiology (London) 257:325–36. [aUW, HJ]Google Scholar
Binder, M. G., Kroin, J. S., Moore, C. P. & Stuart, D. C. (1977) The response of Colgi tendon organs to single motor unit contractions. journal of Physiology (London) 271:337–49. [aUW, SCG, GEL]Google Scholar
Binder, M. D. & Osborn, C. E. (1985) Interactions between motor units and Golgi tendon organs in the tibialis posterior muscle of the cat. journal of Physiology (London) 364:199215. [rUW]CrossRefGoogle ScholarPubMed
Binder, M. D. & Stuart, D. C. (1980 a) Response of la and spindle group II afferents to single motor-unit contractions, journal of Neurophysiology 43:621–29. [arUW, SCG, HJ]CrossRefGoogle Scholar
Binder, M. D. & Stuart, D. C. (1980 b) Motor-unit muscle receptor interactions: Design features of the neuromuscular control system. In: Progress in clinical neurophysiology, vol. 8: Spinal and ss, praspinal mechanisms of voluntary motor control and locomotion, ed. Karger, J. E. Desmedt. [aUW, DB, SCG]Google Scholar
Blevins, C. C. (1964) Studies on the innervation of the stapedius muscle of the cat. Anatomical Record 149:157–71. [MPM]CrossRefGoogle ScholarPubMed
Bodine, S. C., Carfinkel, A., Roy, H. R. & Edgerton, V. R. (1988) Spatial distribution of motor unit fibers in the cat soleus and tibialis anterior muscles: Local interactions, journal of Neuroscience 8:2142–52. [VRE]CrossRefGoogle ScholarPubMed
Bodine, S. C., Roy, R. H., Meadows, D. A., Zernicke, R. F., Sacks, R. D., Fournier, M. & Edgerton, V. H. (1982) Architectural, histoehemical, and contractile characteristics of a unique biarticular muscle: The cat semitendinosus. journal of Neurophysiology 48:192201. [aUW]CrossRefGoogle Scholar
Bodine, S. C., Roy, R. R., Zernicke, R. F. & Edgerton, V. R. (1982) Intracontractile length changes in the proximal and distal compartments of the semitendinosus. Society of Neuroscience Abstracts 8:948. [aUW]Google Scholar
Borg, T. K. & Caufield, J. B. (1980) Morphology of connective tissue in skeletal muscle. Tissue and Cell 12:197207. [VRE]CrossRefGoogle ScholarPubMed
Botterman, B. R., Binder, M. D. & Stuart, D. C. (1978) Functional anatomy of the association between motor units and muscle receptors. American Zoology 18:135–52. [aUW, JBM]CrossRefGoogle Scholar
Botterman, B. H., Hamm, T. M., Reinking, H. M. & Stuart, D. G. (1983 a) Localization of monosynaptic la excitatory post-synaptic potentials in the motor nucleus of the cat biceps femoris muscle, journal of Physiology (London) 338:355–77. [aUW, DB]CrossRefGoogle Scholar
Botterman, B. H., Hamm, T. M., Reinking, H. M. & Stuart, D. G. (1983 b) Distribution of monosynaptic la excitatory post-synaptic potentials in the motor nucleus of the cat semitendinosus muscle, journal of Physiology (London) 338:379–93. [aUW, DB, GEL]CrossRefGoogle Scholar
Boyd, I. A. (1985) Muscle spindles and stretch reflexes, In: Scientific basis of clinical neurology, ed, Swssh, M & Kennard, C., Churchill Livingstone. [HJ]Google Scholar
Boyd, I. A. & Gladden, M. H. (1985) Review. In: The muscle spindle, ed. Boyd, I. A. & Gladden, M. H., Macmillan, [HJ]CrossRefGoogle Scholar
Brink, E. E. (1988) Segmental organization of the upper cervical cord. In: Control of head movement, ed. Peterson, B. W. & Richmond, F. J. R.. Oxford University Press. [GEL]Google Scholar
Brink, E. E., Harrison, P. J., Jankowska, E., McCrea, D. A. & Skoog, B. (1983) Post-synaptic potentials in a population of motoneurones following activity of single interneurones in the cat. Journal of Physiology (London) 343:341–59. [rUW]CrossRefGoogle Scholar
Brink, E. E., Jankowska, E., McCrea, D. A. & Skoog, B. (1983) Inhibitory interactions between interneurones in reflex pathways from group la and group lb alferents in the cat. journal of Physiology (London) 343:361–73, [rUW]CrossRefGoogle Scholar
Brink, E. E., Jinnai, K. & Wilson, V. J. (1981) Pattern of segmental monosynaptic input to cat dorsal neck motoneurons. journal of Neurophysiology 46:496505, [aUW]CrossRefGoogle ScholarPubMed
Buchanan, T. S., Almdale, D. P. J., Lewis, J. L. & Rymer, W. Z. (1986) Characteristics of synergic relations during isometric contractions of human elbow muscles. journal of Neurophysiology 56:1225–41, [aUW]CrossRefGoogle ScholarPubMed
Burke, B. E. (1981) Motor units: Anatomy, physiology, and functional organization. In: Handbook of physiology, sec. 1, The nervous system, vol. 2, Motor control, part 1, ed. Brooks, V. B., American Physiological Society. [aUW, SCG, LMM]Google Scholar
Burke, B. E. (1985) Integration of sensory information and motor commands in the spinal cord. In: Motor control: From movement trajectories to neural mechanisms, Short course 2 syllabus, organized by Stein, P. C. S., Society for Neuroscience. [rUW]Google Scholar
Burke, R. E, Rymer, W. Z. & Walsh, J. V. Jr,. (1976) Relative strength of synaptic input from short-latency pathways to motor units of defined type in cat medial gastrocnemius. journal of Neurophysiology 39:44758. [aUW, LMM]CrossRefGoogle ScholarPubMed
Burke, R. E., Strick, P. L., Kanda, K., Kim, C. C. & Walmsley, B. (1977) Anatomy of medial gastrocnemnius and soleus motor nuclei in cat spinal cord. journal of Neurophysiology 40:667–80. [aUW, LJ]CrossRefGoogle ScholarPubMed
Buys, E. J., Lemon, H. N., Mantel, C. W. H. & Muir, R. B. (1986) Selective facilitation of different hand muscles by single corticospinal ncurones in the conscious monkey. journal of Physiology (London) 381:529–49. [SCG]CrossRefGoogle ScholarPubMed
Cameron, W. E., Binder, M. D., Botterman, B. R., Reinking, R. M. & Stuart, D. C. (1981) “Sensory partitioning” of cat medial gastrocncmius muscle by its muscle spindles and tendon organs. Journal of Neurophysiology 46:3247, [aUW, SCC]CrossRefGoogle ScholarPubMed
Capaday, C. & Stein, R. B. (1986) Amplitude modulation of the soleus H- reflex in the human during walking and standing. Journal of Neuroscience 6:1308–13. [rUW, JD]CrossRefGoogle ScholarPubMed
Capaday, C. (1987) Difference in the amplitude of the human soleus H-reflex during walking and running. journal of Physiology (London) 392:513–22. [rUW, JD]Google Scholar
Chanaud, C. & Macpherson, J. M. (1987) Independent activity of compartments of feline biceps femoris during postural responses to translations of the support surface. Society of Neuroscience Abstracts 13:370. [aUW]Google Scholar
Chin, N. K., Cope, M. & Pang, M. (1962) Number and distribution of spindle capsules in seven hind limb muscles of the cat. In: Symposium on muscle receptors, ed. Barker, D.. Hong Kong University Press. [JBM]Google Scholar
Christakos, C. N. (1982) A study of the muscle force waveform using a population stochastic model of skeletal muscle. Biological Cybernetics 44:91106. [aUW]Google Scholar
Christakos, C. N. & Windhorst, U. (1986) The information carried by spindle afferents on motor unit activity as revealed by spectral analysis. Brain Research 367:5262. [aUW]CrossRefGoogle ScholarPubMed
Clamann, H. P., Schelborn, T. B. & Binder-Macleod, S. A. (1986) Non-linear force production in electrically stimulated motor units. Society of Neuroscience Abstracts 12:467. [aUW]Google Scholar
Clancie, B. & Bawa, P. (1985) Voluntary and reflexive recruitment of flexor carpi radialis motor units in humans. Journal of Neurophysiology 53:11941200. [PB]CrossRefGoogle Scholar
Clancie, B. (1986) Limitations of the spike-triggered averaging technique. Muscle & Nerve 9:7883. [PB]CrossRefGoogle Scholar
Clancie, B. (1987) Motor-unit responses in human wrist flexor and extensor muscles to transcranial cortical stimuli. Journal of Neurophysiology 58:1168–85. [PB]CrossRefGoogle Scholar
Close, R. I. (1972) Dynamic properties of mammalian skeletal muscle. Physiological Reviews 52:129–7 [aUW]CrossRefGoogle Scholar
Clough, J. F. M., Kernell, D. & Phillips, C. G. (1968) The distribution of monosynaptic excitation from the pyramidal tract and from primary spindle afferents to motoneurones of the baboon's hand and forearm. Journal of Physiology (London) 198:145–66. [AT]CrossRefGoogle ScholarPubMed
Cohen, A. H. (1988) Evolution of the vertebrate central pattern generator for locomotion. In: Neural control of rhythmic movements in vertebrates, ed. Cohen, A., Rossignol, S. & Crillner, S., John Wiley. [AHC]Google Scholar
Cohen, L. A. (1953) Localization of stretch reflex. Journal of Neurophysiology 16:272–85. [aUW, DB]CrossRefGoogle ScholarPubMed
Cohen, L. A. (1954) Organization of stretch reflex into two types of direct spinal arcs. journal of Neurophysiology 17:443–53. [aUW, DB]CrossRefGoogle ScholarPubMed
Collins, W. F. IIIDavis, B. M. & Mendell, L. M. (1986) Amplitude modulation of EPSPs in motoneurons in response to a frequency- modulated train in single la siferent fibers. journal of Neuroscience 6:1463–68. [LMM]Google Scholar
Collins, W. F. (1988) Modulation of EPSP amplitude during high frequency stimulation depends on the correlation between potentiation, depression and facilitation. Brain Research 442:161–65. [LMM]CrossRefGoogle Scholar
Collins, W. F. IIIHonig, M. & Mendell, L. M. (1984) Heterogeneity of group la synapses on homonymous γ motoneurons as revealed by high- frequency stimulation of Ia afferent fibers. journal of Neurophysiology 52:980–93. [LMM, JBM]CrossRefGoogle Scholar
Cooper, S. (1966) Muscle spindles and motor units. In: Control and innervation of skeletal muscle, ed. Andrews, B. L.. Thomson. [LJ]Google Scholar
Creed, R. S., Denny-Brown, D., Eceles, J. C., Liddell, E. G. T. & Shemngto, C. S. (1932) Reflex activity of the spinal cord. Oxford University Press (London). [JD]Google Scholar
Crowninshield, R. D. (1978) Use of optimization techniques to predict muscle forces. Journal of Biomechanical Engineering 100:8892. [aUW]CrossRefGoogle Scholar
Curtis, D. R. & Eccles, J. C. (1960) Synaptic action during and after repetitive stimulation. Journal of Physiology (London) 150:374- 98. [LMM]CrossRefGoogle ScholarPubMed
Datta, A. K. & Stephens, J. A. (1981) The effects of digital nerve stimulation on the firing of motor units in human first dorsal interosseous muscle. Journal of Physiology (London) 318:501–10. [REB]CrossRefGoogle ScholarPubMed
Debrodt, B. & Bässler, U. (in press) Responses of flexor motor neurones to stimulation of the femoral chordotonal organ of the phasmid Extatosoma tioratum. Zoologische Jahrbücher. Abterlung fuer Àllgemeine Zoologie und Physologie der Tiere. [UB]Google Scholar
Demiéville, H. N. & Partridge, L. D. (1980) Probability of peripheral interaction between motor units and implications for motor control. American Journal of Physiology 238 (Regulatory, Integrative, and Comparative Physiology 7):R119–37. [aUW, VRE]Google ScholarPubMed
Denny-Brown, D. (1929) The histological features of striped muscle in relation to its functional activity. Proceedings of the Royal Society, Series B 104:371411. [aUW]Google Scholar
Denny-Brown, D. (1949) Interpretation of the electromyogram. Archives of Neurology and Psychiatry 61:99128. [aUW]CrossRefGoogle ScholarPubMed
Desmedt, J. E., ed. (1978) Physiological tremor, pathological tremors, and clonus. Progress in Clinical Neurophysiology, vol. 5. Karger. [aUW]Google Scholar
Desmedt, J. E. (1980) Patterns of motor commands during various types of voluntary movement in man. Trends in Neurosciences 3:265–68. [RP]CrossRefGoogle Scholar
Desmedt, J. E. & Godaux, E. (1981) Spinal motoneuron recruitment in man: Rank deordering with direction but not with speed of voluntary movement. Science 214:933–36. [aUW]CrossRefGoogle Scholar
Dessem, D., Iyadurai, O. D. & Taylor, A. (1988) The role of periodontal receptors in the jaw-opening reflex in the cat. Journal of Physiology (London) 406:315–30. [AT]CrossRefGoogle ScholarPubMed
Diener, H. C.Bootz, F., Dichgans, J. & Bruzck, W. (1983) Variability of postural “reflexes” in humans. Experimental Brain Research 52:423- 28. [rUW]Google Scholar
Dietz, V., Quintern, J. & Berger, W. (1985) Afferent control of human stance and gait: Evidence for blocking of group I afferents during gait. Experimental Brain Research 61:153–63. [JD]CrossRefGoogle Scholar
Dietz, V., Schmidtbleicher, D. & Noth, J. (1979) Neuronal mechanisms of human locomotion. journal of Neurophysiology 42:1212–22. [rUW]CrossRefGoogle ScholarPubMed
Donselaar, Y., Kernell, D., Eerbeek, O. & Verhey, B. A. (1985) Sornatotopic relations between spinal motoneurones and muscle fibres of the cat's musculus peroneus longus. Brain Research 335:8188. [CCAMC, DK]CrossRefGoogle ScholarPubMed
Dul, J., Townsend, M. A., Shiavi, R. & Johnson, C. E. (1984) Muscular synergism, II: A minimum-fatigue criterion between synergistic muscles. Journal of Biomechanics 17:675–84. [aUW]Google Scholar
Dum, R. P., Burke, R. E., O'Donovan, M. J., Toop, J. & Hodgson, J. A. (1982) Motor unit organization in flexor digitorum longus muscle of the cat. Journal of Neurophysiology 47:1108–25. [aUW]CrossRefGoogle ScholarPubMed
Dunbar, D. C., Macpherson, J. M. & Inglis, J. T. (1988) Activity of lateral gastrocnemius compartments in the cat during postural corrections in the horizontal plane. Society for Neuroscience Abstracts 14:63. [aUW]Google Scholar
Dutia, M. B. & Hunter, M. J. (1985) The sagittal vestibulocollic reflex and its interaction with neck proprioceptive afferents in the decerebrate cat. Journal of Physiology (London) 359:1729. [aUW]CrossRefGoogle ScholarPubMed
Duysens, J. & Loeb, G. E. (1980) Modulation of ipsi- and contralateral reflex responses in unrestrained walking cats. journal of Neurophysiology 44:1024–37. [JD]CrossRefGoogle ScholarPubMed
Duysens, J. & Pearson, K. C. (1976) The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats. Experimental Brain Research 24:245–55. [JD]CrossRefGoogle ScholarPubMed
Eccles, J. C., Eccles, R. M. & Chealy, C. N. (1962) An investigation into the effect of degenerating primary afferent fibers on the monosynaptic innervation of motoneurons. journal of Neurophysiology 25:544–58. [JHA]Google Scholar
Eccles, J. C., Eccles, R. M., Iggo, A. & Ito, M. (1961) Distribution of recurrent inhibition among motoneurones. journal of Physiology (London) 159:479–99. [aUW]CrossRefGoogle ScholarPubMed
Eccles, J. C., Eccles, R. M. & Lundberg, A. (1957 a) The convergence of monosynaptic excitatory afferents onto many different species of motoneurones. Journal of Physiology (London) 137:2250. [aUW, HH]CrossRefGoogle Scholar
Eccles, J. C., Eceles, R. M. & Lundberg, A. (1957 b) Synaptic actions on motoneurones caused by impulses in golgi tendon organ afferents. Journal of Physiology (London) 138:227–52. [rUW]CrossRefGoogle ScholarPubMed
Eccles, J. C., Eceles, R. M. & Lundberg, A. (1958) Integrative patterns of la synaptic actions on motoneurones of hip and knee muscles. journal of Physiology (London) 144:271–98. [aUW]CrossRefGoogle Scholar
Eccles, J. C., Eceles, R. M. & Lundberg, A. (1959) Synaptic actions ts motoneurones by afferents which may evoke the flexion reflex. Arch. Ital. Biol 97:199221. [JD]Google Scholar
Eldred, E., Bridgman, C. F., Swett, J. E. & Eldred, B. (1962) Quantitative comparisons of muscle receptors of the cat's medial gastrocnemius, soleus, and extensor digitorum brevis muscles. In: Symposium on muscle receptors, ed. Barker, D.. Hong Kong University Press. [LJ]Google Scholar
Ellaway, P. H., Murphy, P. B. & Tripathi, A. (1982) Closely coupled excitation of γ-motoneurones by group III muscle afferents with low mechanical threshold in the cat. Journal of Physiology (London) 331:481- 98. [aUW]CrossRefGoogle ScholarPubMed
Emonet-Dénand, F., Hunt, C. C., Petit, J. & Pollin, B. (1988) Proportion of fatigue resistant motor units in hindlimb muscles of the cat and their relation to axonal conduction velocity. Journal of Physiology 400:135–58. [LJ]Google Scholar
Emonet-Dénand, F. & Laporte, Y. (1975) Proportion of muscle spindles supplied by skeletofusimotor axons (B axons) in the peroneus brevis muscle of the cat. journal of Neurophysiology 38:1390–93. [LJ]CrossRefGoogle Scholar
Emonet-Dénand, F., Laporte, Y., Matthews, P. B. C. & Petit, J. (1977) On the subdivision of static and dynamic fusimotor actions on the primary ending of the cat muscle spindle. Journal of Physiology (London) 268:827–61. [MH, LJ]Google Scholar
Emonet-Dénand, F., Laporte, Y. & Proske, U. (1971) Contraction of muscle fibres in two adjacent muscles innervated by branches of the same motor axon. Journal of Neurophysiology 34:132–38. [UP]CrossRefGoogle ScholarPubMed
English, A. W. (1984) An electromyographic analysis of compartments in cat lateral gastrocnemius during unrestrained locomotion. Journal of Neurophysiology 52:114–25. [aUW, AWE]CrossRefGoogle ScholarPubMed
English, A. W. & Letbetter, W. D. (1982 a) Anatomy and innervation patterns of cat lateral gastrocnemius and plantaris muscles. American Journal of Anatomy 164:6777. [aUW]CrossRefGoogle ScholarPubMed
English, A. W. (1982 b) A histochemical analysis of identified compartments of cat lateral gastrocnemius muscle. Anatomical Record 204:123–30. [aUW, DK, JBM]CrossRefGoogle ScholarPubMed
English, A. W. & Weeks, O. I. (1984) Compartmentalization of single muscle units in cat lateral gastrocnemius. Experimental Brain Research 56:361–68. [aUW, DK]CrossRefGoogle ScholarPubMed
English, A. W. & Weeks, O. I. (1987) An anatomical and functional analysis of cat biceps lemons and semitendinosus muscles. journal of Morphology 191:161–75. [AWE]Google Scholar
Enoka, R. M. & Stuart, D. C. (1984) Henneman's “size principle”: Current issues. Trends in Neurosciences 7:226–28. [aUW]Google Scholar
Enzure, K., Fukushima, K., Schor, R H. & Wilson, V. J. (1983) Compartmentalization of the cervicocollic reflex in cat splenius muscle. Experimental Brain Research 51:397404. [aUW]Google Scholar
Eriksson, P.-O. & Thornell, L. -E. (1987) Relation to extrafusal fibre type composition in muscle spindle structure and location in the human masseter muscle. Archives of Oral Biology 32:483–91. [HJ]Google Scholar
Fetz, E., Jankowska, E., Johannisson, T. & Lipski, J. (1979) Autogenetic inhibition of motoneurones by impulses in group la muscle spindle siferents. Journal of Physiology (London) 293:173–95. [aUW]CrossRefGoogle Scholar
Fleshman, J. W., Lev-Tov, A. & Burke, B. E. (1984) Peripheral and central control of flexor digitorum longsis and flexor hallucis longus motoneiirons: The synaptic basis of functional diversity. Experimental Brain Research 54:133–49. [HH]CrossRefGoogle ScholarPubMed
Fleshman, J. W., Munson, J. B. & Sypert, G. W. (1981) Homonymous projection of individual group la fibers to physiologically characterized medial gastrocnemius motoneurons in the cat. journal of Neurophysiology 46:1339–48. [aUW]CrossRefGoogle Scholar
Fleshman, J. W., Munson, J. B. & Sypert, G. W. (1981 a) Rheobase, input resistance and motor unit type in medial gastrocnemius input resistance and motor unit type in medial gastrocnemius motoneurons in the cat. Journal of Neurophysiokigy 46:1326–38. [LMM]CrossRefGoogle ScholarPubMed
Forssberg, H., Criliner, S. & Rossignol, S. (1975) Phase dependent reflex reversal during walking in chronic spinal cats. Brain Research 85:103–7. [JD]CrossRefGoogle ScholarPubMed
Fritz, N. & Yamaguchi, T. (1985) Relationship between la input and force output in single motor units of the cat extensor digitorum communis (EDC) muscle. Neuroscience Letter. Supplement 22:S59. [aUW, HH]Google Scholar
Fritz, N., Illert, M. & Saggau, P. (1981) Does the la input of a motornucleus organize the neurones into functional subpools? Pflūgers Archiv 389:1121. [HH]Google Scholar
Fritz, N., Illert, M. & Wiedemann, E. (1985) EMG studies in the distal forelimb of the cat during locomotion and food taxing movements. Acta Physiologic Scand. 123:P75. [HH]Google Scholar
Fritz, N., Illert, M., de la Motte, S., Reeh, P. & Saggau, P. (1989) Pattern of monosynaptic la connections in the cat forelimb. Journal of Physiology (London) [HH]CrossRefGoogle Scholar
Fukami, Y. (1981) Responses of isolated Golgi tendon organs of the cat to muscle contraction and electrical stimulation. journal of Physiology 318:429–43. [LJ]CrossRefGoogle ScholarPubMed
Gandevia, S. C. & Rothwell, J. C. (1987) Knowledge of motor commands and the recruitment of human motoneurons. Brain 100:1117–30. [SCG]Google Scholar
Gans, C. (1982) Fiber architecture and muscle function. Exercise and Sport Sciences Reviews 10:160207. [aUW]CrossRefGoogle ScholarPubMed
Gans, C. (1988) Muscle insertions do not incur mechanical advantage. Acta Zoologica Cracovienska, Festschrsft for Macian Minarski, 31[pt 11](25):615–24. [CG]Google Scholar
Gans, C. & Bock, W. J. (1965) The functional significance of muscle architecture: A theoretical analysis. Ergebnisse der Anatomic 38:115- 42. [aUW]Google ScholarPubMed
Gans, C. & De Vree, F. (1987) Functional bases of fiber length and angulation in muscle. journal of Morphology 192(1):6385; 193(3):323. [CG]CrossRefGoogle ScholarPubMed
Gans, C., Loeb, C. E. & de Vree, F. (1989) Architecture and physiological properties of the semitendinosus muscle in domestic goats. journal of Morphology 199:287–97. [CG]CrossRefGoogle ScholarPubMed
Gamett, R. & Stephens, J. A. (1980) The reflex responses of single motor units in human first dorsal interosseus muscle following cutaneous afferent stimulation. journal of Physiology 303:351–64. [JD]Google Scholar
Gameti, R. & Stephens, J. A. (1981) Changes in the recruitment threshold of motor units produced by cutaneous stimulation in man. journal of Physiology (London) 311:463–73. [REB, CCAMG]Google Scholar
Gaunt, A. S. & Cans, C. (1988) Motor end-plate and myofiber arrangement in thigh muscles of chickens. American Zoology 28(4):90A. [CG]Google Scholar
Gielen, C. C. A. M., Ramaekers, L. & van Zuylen, E. J. (1988) Long-latency reflexes as co-ordinated functional responses in man. Journal of Physiology 407:275–92. [CCAMG]CrossRefGoogle ScholarPubMed
Gonyea, W. J. & Ericson, G. C. (1977) Morphological and histochemical organization of the flexor carpi radialis muscle in the cat. American journal of Anatomy 148:329–44. [aUW]CrossRefGoogle ScholarPubMed
Gordon, G. & Holbourn, A. H. S. (1949) The mechanical activity of single motor units in reflex contraction of skeletal muscle. journal of Physiology (London) 110:2635. [AT]CrossRefGoogle ScholarPubMed
Gordon, G. & Phillips, C. G. (1949) Slow and rapid components in a flexor muscle. Journal of Physiology (London) 110:6P. [AT]Google Scholar
Granit, R. (1970) The basis of motor control. Academic Press. [AT]Google Scholar
Gregor, R. J., Roy, R. R., Whiting, W. W., Lovely, R. G., Hodgson, J. A. & Edgerton, V. R. (1988) Mechanical output of the cat soleus during treadmill locomotion: In vivo vs in situ characteristics. journal of Biomechanics 21:721–32. [VRE]CrossRefGoogle ScholarPubMed
Gregory, J. E. & Proske, U. (1979) The responses of golgi tendon organs to stimulation of different combinations of motor units. journal of Physiology 295:251–62. [UP]CrossRefGoogle ScholarPubMed
Grillner, S. (1981) Control of locomotion in bipeds, tetrapods and fish. In: Handbook of physiology, sec. 1: The nervous system: vol. 2: Motor control, part 1, ed. Brooks, V. B.. American Physiological Society. [CS]Google Scholar
Grimby, L. & Hannerz, J. (1977) Firing rate and recruitment order of toe extensor motor units in different modes of voluntary contractions. journal of Physiology (London) 264:865–79. [REB]CrossRefGoogle Scholar
Guinan, J. J. Jr, Joseph, M. P. & Norris, B. E. (in press) Brainstem facial-motor pathways from two distinct groups of stapedius motoneurons in the cat. Journal of Comparative Neurology. [MPM]Google Scholar
Guinan, J. J. Jr & McCue, M. P. (1987) Asymmetries in the acoustic reflexes of the cat stapedius muscle. Hearing Research 26:110. [MPM]CrossRefGoogle ScholarPubMed
Haase, J., Cleveland, S. & Ross, H. G. (1975) Problems of postsynaptic autogenous and recurrent inhibition in the mammalian spinal cord. Reviews of Physiology, Biochemistry, and Pharmacology 73:73129. [aUW]Google ScholarPubMed
Hamm, T. M. (1988) Recurrent inhibition to and from motoneurons innervating the flexor digitorum longus and flexor hallucis longus in the cat. Society for Neuroscience Abstracts 14:794. [HH]Google Scholar
Hamm, T. M., Koehier, W., Stuart, D. G. & Vanden-Noven, S. (1985) Partitioning of monosynaptic la excitatory postsynaptic potentials in the motor nucleus of the cat semimembranosus muscle. Journal of Physiology (London) 369:379–98. [aUW, DB]CrossRefGoogle Scholar
Hamm, T. M., Sasaki, S., Stuart, D. G., Windhorst, U. & Yuan, C. S. (1987 a) The measurement of single motor axon recurrent inhibitory postsynaptic potentials in the cat. Journal of Physiology (London) 388:631–51. [aUW]Google Scholar
Hamm, T. M., Sasaki, S., Stuart, D. G., Windhorst, U. & Yuan, C. S. (1987 b) Distribution of single axon recurrent inhibitory post-synaptic potentials in a single spinal motor nucleus in the cat. journal of Physiology (London) 388:653–64. [aUW]CrossRefGoogle Scholar
Hardt, D. E. (1978) Determining muscle forces in the leg during normal human walking: An application and evaluation of optimization methods. Journal of Bionsechanical Engineering 100:7278. [aUW]CrossRefGoogle Scholar
Harrison, P. J. & Jankowska, E. (1985 a) Sources of input to interneurones mediating group I non-reciprocal inhibition of motoneurones in the cat. Journal of Physiology (London) 361:379401. [rUW]CrossRefGoogle Scholar
Harrison, P. J. & Jankowska, E. (1985 b) Organization of input to the interneurones mediating group I non- reciprocal inhibition of motoneurones in the cat. Journal of Physiology (London) 361:403–18. [rUW]CrossRefGoogle Scholar
Harrison, P. J., Jankowska, E. & Johannisson, T. (1983) Shared reflex pathways of group I afferents of different cat hindlimb muscles. journal of Physiology (London) 338:113–27. [aUW, GEL]CrossRefGoogle Scholar
Harrison, P. J. & Taylor, A. (198) Individual excitatory postsynaptic potentials due to muscle spindle la siferents in cat triceps surae motoncurones. Journal of Physiology (London) 312:455–70. [aUW]CrossRefGoogle Scholar
Hasan, Z. & Stuart, D. C. (1984) Mammalian muscle receptors. In: Handbook of the spinal cord, vol. 2 & 3, Anatomy and physiology, ed. Davidoff, R. A.. Dekker. [aUW]Google Scholar
Hatze, H. & Buys, J. D. (1977) Energy-optimal controls in the mammalian neuromuscular system. Biological Cybernetics 27:920. [aUW]CrossRefGoogle ScholarPubMed
He, J., Levine, W. S. & Loeb, G. E. (1988) The modeling of the neuromusculoskeletal control-system of a cat hindlimb. Proceedings of the Third IEEE International Symposium on Intelligent Control, Arlington, VA. [GEL]Google Scholar
Henneman, E. (1957). Relations between size of neurons and their susceptibility to discharge. Science 126:1345–46. [rUW, PB]CrossRefGoogle ScholarPubMed
Henneman, E.(1980) Organization of the motoneuron pool: The size principle. In: Medical physiology, ed. Mountcastle, V. B.. Mosby, C. V.. [MPM]Google Scholar
Henneman, E., Clamann, H. P., Cillies, J. D. & Skinner, R. D. (1974) Rank- order of motoneurons within a pool: Law of combination. Journal of Neurophysiology 37:1338–49. [PB]CrossRefGoogle ScholarPubMed
Hennemass, E. & Mendell, L. M. (1981) Functional organization of motoneuron pool and its input. In: Handbook of physiology, Sec. 1, The nervous system, vol. 2, Motor control, part 1, ed. Brooks, V. B.. American Physiological Society. [aUW, CS, AT]Google Scholar
Henneman, E., Somjen, G. & Carpenter, D. O. (1965) Functional significance of cell size in spinal motoneurons. Journal of Neurophysiology 28:560–80. [PB]Google Scholar
Hermanson, J. W., Lennard, P. R. & Takamoto, R. L. (1986) Morphology and histochemistry of the ambiens muscle of the red-eared turtle (Pseudomys scnpta). Journal of Morphology 187:3949. [aUW]CrossRefGoogle Scholar
Herring, S. W., Grimm, A. F. & Grimm, B. R. (1979) Functional heterogeneity in a multipinnate muscle. American Journal of Anatomy 154:563–75. [aUW]CrossRefGoogle Scholar
Herring, S. W., Wineski, L. E. & Anapol, F. C. (1989) Neural organization of the masseter muscle in the pig. Journal of Comparative Neurology 280:563–76. [AWE, GS]CrossRefGoogle ScholarPubMed
Hoffer, J. A., Loeb, G. E., Sugano, N., Marks, W. B., O'Donovan, M. J. & Pratt, C. A. (1987) Cat hindlimb motoneurons during locomotion, III: Functional segregation in sartoriua. journal of Neurophysiology 57:554–62. [aUW, MPM]CrossRefGoogle Scholar
Hongo, T., Jankowska, E. & Lundberg, A. (1969) The rubrospinal tract, II: Facilitation of intemeuronal transmission in reflex paths to motoneurones. Experimental Brain Research 7:365–91. [aUW]Google Scholar
Honig, M., Collins, W. F. III & Mendell, L. M. (1983) Motoneuron EPSPs exhibit different frequency sensitivities to single la-afferent fiber stimulation. journal of Neurophysiology 49:886901. [LMM]CrossRefGoogle Scholar
Horcholle-Bossavit, G., Jami, L., Petit, J., Vejsada, R. & Zytnicki, D. (1988) Effects of muscle shortening on the responses of cat tendon organs to unfused contractions. journal of Neurophysiology 59:1510–23. [SCG, LJ]Google Scholar
Horcholle-Bossavit, G., Jami, L., Petit, J., Vejsada, R. & Zytnicki, D. (1989) Endcoding of muscle contractile tension by Colgi tendon organs. In: Stance and motion: Facts and concepts, ed. Gurfinkel, Y., Ioffe, M., Massion, J. & Roll, J. P.. Plenum Press. [LJ]Google Scholar
Horcholle-Bossavit, G., Jami, L., Thiesson, D. & Zytnicki, D. (1988) Motor nuclei of personeal muscles in the cat spinal cord. Journal of Comparative Neurology 277:430–40. [LJ]CrossRefGoogle Scholar
Houk, J. C. & Henneman, E. (1967) Responses of Colgi tendon organs to active contraction of the soleus muscle of the cat. Journal of neurophysiology 30:466–81. [LJ]CrossRefGoogle Scholar
Howard, J. D., Hoit, J. D., Enoka, R. M. & Hasan, Z. (1986) Relative activation of two human elbow flexors under isometric conditions: A cautionary note concerning flexor equivalence. Experimental Brain Research 62:199202. [aUW]CrossRefGoogle ScholarPubMed
Hoyle, G. (1978) Distribution of nerve and muscle fibre types in locust jumping muscle. Journal of Experimental Biology 73:205–33. [FD]CrossRefGoogle ScholarPubMed
Hoyle, G. (1983) Muscles and their neural control. Wiley. [FD]Google Scholar
Huhle, R. (1985) Topographic studies relating distribution of Ia and γ-fibres in spinal cord and position of muscle spindles in cat tibialis anterior muscle. Brain Research 333:299304. [aUW, MH, HJ]Google Scholar
Hulliger, M. (1984) The mammalian muscle spindle and its central control. Reviews of Physiology, Biochemistry, and Pharmacology 101:1110. [MH, HJ]Google ScholarPubMed
Hulliger, M., Matthews, P. B. C. & Noth, J. (1977) Effects of combining static and dynamic flisimotor stimulation on the response of the muscle spindle primary ending to sinusoidal stretching. journal of Physiology (London) 267:811–38. [MH]Google Scholar
Hulliger, M., North, E., Thelin, A.-E. & Vallbo, A. B. (1979) The responses of afferent fibers from the glabrous skin of the hand during voluntary finger movements in man. Journal of Physiology 291:233–49. [JD]Google Scholar
Hultborn, H., Jankowska, E. & Lindstrom, S. (1971 a) Recurrent inhibition from motor axon collaterals of transmission in the Ia inhibitory pathway to motoneurones. Journal of Physiology (London) 215:591612. [aUW]CrossRefGoogle ScholarPubMed
Hultborn, H., Jankowska, E. & Lindstrom, S. (1971 b) Recurrent inhibition of interneurones monosynaptically activated from group Ia afferents. Journal of Physiology (London) 215:613- 36. [aUW]CrossRefGoogle ScholarPubMed
Hultborn, H., Jankowska, E. & Lindstrom, S. (1971 c) Relative contribution from different nerves to recurrent depression of la IPSPs in motoneurones. journal of Physiology (London) 215:637- 64. [aUW]CrossRefGoogle Scholar
Iliya, A. R. & Dum, R. P. (1984) Somatotopic relations between the motor nucleus and its innervated muscle fibers in the cat tibialis anterior. Experimental Neurology 86:272–92. [auW]CrossRefGoogle ScholarPubMed
Inbar, G. F. & Ginat, T. (1983) Effects of muscle model parameter dispersion and multi-loop segmental interaction on the neuromuscular system performance. Biological Cybernetics 48:6983. [aUW]CrossRefGoogle ScholarPubMed
Inbar, G. F. & Joseph, P. J. (1976) Analysis of a model of the triceps surae muscle reflex control system. IEEE Transactions on Systems, Man, and Cybernetics SMC-6:2533. [aUW]Google Scholar
Jami, L., Murthy, K. S. K. & Petit, J. (1982) A quantitative study of skeletofusimotor innervation in the cat peroneus tertius muscle. Journal of Physiology 325:125–44. [LJ]CrossRefGoogle ScholarPubMed
Jami, L. & Petit, J. (1976) Heterogeneity of motor units activating single Colgi tendon organs in cat leg muscles. Experimental Brain Research 24:485–93. [LJ]CrossRefGoogle Scholar
Jami, L. & Petit, J. (1978) Fusimotor actions on sensitivity of spindle secondary endings to slow muscle stretch in cat peroneus tertius. journal of Ncurophysiology 41:860–69. [LJ]CrossRefGoogle ScholarPubMed
Jami, L., Petit, J., Proske, U. & Zytnicki, D. (1985) Responses of tendon organs to unfused contractions of single motor unita. Journal of Neurophysiology 53:3242. [SCC, LJ]CrossRefGoogle Scholar
Jami, L., Petit, J. & Scott, J. J. A. (1985) Activation of cat muscle spindles by Static skeletofusimotor axons. Journal of Physiology 369:323–35. [LJ]CrossRefGoogle ScholarPubMed
Jankowska, E. (1984) lnterneuronal organization of reflex pathways from proprioceptors. In: Frontiers in physiological research, ed. Carlick, D. C. & Korner, P. I.. Australian Academy of Sciences. [rUW, AT]Google Scholar
Jankowska, E. & Lundberg, A. (1981) Interneurones in the spinal cord. Trends in Neurosciences 4:230–33. [rUW]CrossRefGoogle Scholar
Jankowska, E. & Odutola, A. (1980) Crossed and uncrossed synaptic actions on motoneurones of back muscles in the cat. Brain Research, 194:6578. [aUW]Google Scholar
Johansson, H. (1981) Reflex Control of γ-Motoneurones. Umea University Medical Dissertations, New Series No. 70. [HJ]Google Scholar
Johansson, H. (1985) Reflex integration in the γ-motor system. In: The muscle spindle. ed. Boyd, I. A. & Gladden, M. H.. Macmillan. [HJ]Google Scholar
Johansson, H. (1988) Bubrospinal and rubrobulbospinal influences on dynamic and static γ-motoneurones. Behavioural Brain Research 28:97107. [HJ]CrossRefGoogle ScholarPubMed
Johansson, H., Sjölander, P. & Sojka, P. (1986) Actions on γ-motoneurones elicited by electrical stimulation of joint afferent fibres in the hind limb of the cat. journal of Physiology (London) 375:137–52. [HJ]CrossRefGoogle ScholarPubMed
Johansson, H., Sjölander, P. & Sojka, P. (1988) Fusimotor reflexes in triceps surae muscle elicited by natural and electrical stimulation of joint afferents. Neuro-Orthopedics 6:6780. [HJ]Google Scholar
Johansson, H., Sjolander, P., Sojka, P. & Wadell, I. (1987) Fusimotor reflexes to antagonistic muscles simultaneously assessed by multi-alferent recordings from muscle spindle afferents. Brain Research 435:337–42. [HJ]CrossRefGoogle ScholarPubMed
(in press) Reflex actions on the γ-muscle-spindle systems of muscles acting at the knee joint elicited by stretch of the posterior cruciate ligament. Neuro-Orthopedics. [HJ]Google Scholar
Johansson, H. & Sojka, P. (1985) Actions on γ-motoneurones elicited by electrical stimulation of cutaneous afferent fibres in the hind limb of the cat. Journal of Physiology (London) 366:343–63. [HJ]Google Scholar
Joseph, M. P., Guinan, J. J. Jr, Fullerton, B. C., Norris, B. E. & Kiang, N. Y. S. (1985) Number and distribution of stapedius motoneurons in cats. Journal of Comparative Neurology 232:4354. [MPM]CrossRefGoogle ScholarPubMed
Kanda, K., Burke, B. E. & Walmsley, B. (1977) Differential control of fast and slow twitch motor units in the decerebrate cat. Experimental Brain Research 29:5774. [REB, JD]CrossRefGoogle ScholarPubMed
Kandou, T. W. A. & Kernell, D. (1986) Localization of intramuscular activity during centrally evoked contractions of the cat's M. peroneus bogus. Neuroscience Letters, Supplement 26:S81. [aUW]Google Scholar
Kandou, T. W. A. & Kernell, D. (1989) Distribution of activity within the cat's peroneus longus muscle when activated in different ways via the central nervous system. Brain Research 486:340–50. [DK]Google Scholar
Kernell, D. & Eerbeek, O. (in press) Physiological effects of different patterns of chronic stimulation on muscle properties. In: Neuromuscular use and disuse: Basic concepts and clinical implications, ed. Rose, F. C. & Jones, B.. Chapman & Hall. [DK]Google Scholar
Kidokoro, Y., Kubota, K., Shuto, S. & Sumino, R. (1968) Reflex organisation of the cat masticatory muscles. Journal of Neurophysiology 31:695708. [AT]CrossRefGoogle ScholarPubMed
Kobler, J. B., Vacher, S. R. & Guinan, J. J. Jr (1987) The recruitment order of stapedius motoneurons in the acoustic reflex varies with sound laterality. Brain Research 425:372–75. [MPM]CrossRefGoogle ScholarPubMed
Koehler, W. & Windhorst, U. (1980) Multi-loop representation of the segmental muscle stretch reflex: Its risk of instability. Biological Cybernetics 38:5161. [aUW, MH]Google Scholar
Koehler, W. & Windhorst, U. (1981) Frequency response characteristics of a multi-loop representation of the segmental muscle stretch reflex. Biological Cybernetics 40:5970. [aUW]CrossRefGoogle ScholarPubMed
Kuipers, U., Meyer-Lohmann, J. & Windhorst, U. (1986) Responses of cutaneous afferents and spinal interneurones to mechanical activity elicited by motor unit stimulation. Neuroscience Letters, Supplement 26:S363. [aUW]Google Scholar
LaBella, L. A., Kehler, J. P. & McCrea, D. A. (1989) A differential synaptic input to the motor nuclei of triceps surae from the caudal and lateral cutaneous sued nerves. Journal of Neurophysiology 61:291301. [JD]CrossRefGoogle Scholar
Lamb, A. (1976) The projection patterns of the ventral horn to the hind limb during development. Developmental Biology 54:8299. [HH]Google Scholar
Landmesser, L. (1978) The development of motor projection patterns in the chick hind limb. journal of Physiology (London) 284:391414. [HH]Google Scholar
Laporte, Y., Emonet-Dénand, F. & Jami, L. (1981) The skeletofusimotor or B-innervation of mammalian muscle spindles. Trends in Neurosciences 4:9799.CrossRefGoogle Scholar
Letbetter, W. D. (1974) Influence of intramuscular nerve branching on motor init organization in medial gastrocnemius muscle. Anatomical Record 178:402. [aUW]Google Scholar
Lev-Tov, A. & Tal, M. (1987) The organization and activity patterns of the aisterior and posterior head of the guinea pig digastric muscle. journal of Neuro physiology 58:496509. [aUW]Google ScholarPubMed
Lloyd, D. P. C., Hunt, C. C. & Mcintyre, A. K. (1955) Transmission in fractionated monosynaptic spinal reflex systems. Journal of General Physiology 38:307–17.[aUW]CrossRefGoogle ScholarPubMed
Loeb, G. E. (1984) The control and responses of mammalian muscle spindles during normally executed motor tasks. Exercise and Sport Sciences Reviews 12:157204. [aUW, HJ]CrossRefGoogle ScholarPubMed
Loeb, G. E. (1985) Task groups: Coping with kinematic heterogeneity. journal of Experimental Biology 115:137–46. [aUW, JD]CrossRefGoogle ScholarPubMed
Loeb, G. E. (1987) Hard lessons in motor control from the mammalian spinal cord. Trends in Neuroscicnces 10:108–13. [aUW, GEL]CrossRefGoogle Scholar
Loeb, G. E. & Duysens, J. (1979) Activity patterns in individual hindlimb primary and secondary muscle spindle afferents during normal movements in unrestrained cats. journal of Neurophysialogy 43:968–85. [LMM]Google Scholar
Loeb, G. E., He, J. & Levine, W. S. (in press). Spinal cord circuits: Are they mirrors of musculoskeletal mechanics? journal of Motor Behavior.[GEL]Google Scholar
Loeb, G. E.. Pratt, C. A., Chanaud, C. M. & Richmond, F. J. R. (1987) Distribution and innervation of short, interdigitated muscle fibers in parallel-fibered muscles of the cat hindlimb. journal of Morphology 191:115. [aUW, VRE, CG]Google Scholar
Lucas, S. M. & Binder, M. D. (1984) Topographic factors in distribution of homonymous group Ia afferent input to cat medial gastrocnemius motoneurons. Journal of Neurophysiology 51:5063. [aUW, DB, SCG]Google Scholar
Lucas, S. M., Cope, T. C. & Binder, M. D. (1984) Analysis of individual Ia afferent EPSPs in a homonymous motoneuron pool with respect to muscle topography. Journal of Neurophysiology 51:6474. [aUW, DB, SCG]CrossRefGoogle Scholar
Lundberg, A., Malmgren, K. & Schomberg, E. D. (1977) Cutaneous facilitation of transmission in reflex pathways from Ib afferents to motoneurones. journal of Physiology 265:763–80. [JD]CrossRefGoogle ScholarPubMed
Lundberg, A., Maimgren, K. & Schomberg, E. D. (1987) Reflex pathways from group II muscle afferents. 3. Secondary spindle afferents and the FRA: A new hypothesis. Experimental Brain Research 65:294306. [AT]CrossRefGoogle Scholar
Lüscher, H. -B., Ruenzel, P. & Henneman, E. (1980) Topographic distribution of terminals of Ia and group II fibers in spinal cord, as revealed by postsynaptic population potentials. Journal of Neurophysiology 43:968–85. [aUW, GEL]CrossRefGoogle ScholarPubMed
Lyon, M. J. & Malmgren, L. T. (1982) A histochemical characterization of muscle fiber types in the middle ear muscles of the eat. Acta Otolaryngologica 94:99109. [MPM]Google Scholar
Macpherson, J. M. (1988) Strategies that simplify the control of quadrupedal stance, II: Electromyographic activity. Journal of Neurophysiology 60:218–31. [aUW]CrossRefGoogle ScholarPubMed
Maier, A. (1979) Occurrence and distribution of muscle spindles in masticatory and suprahyoid muscles of the rat. American journal of Anatomy 155:483506. [aUW]CrossRefGoogle ScholarPubMed
Maier, A. (1981) Characteristics of pigeon gastrocnemius and its muscle spindle supply. Experimental Neurology 74:892906. [aUW]CrossRefGoogle ScholarPubMed
Maler, A. & Eldred, E. (1974) Postnatal growth of extrafusal and intrafusal fibers in the soleus and medial gastrocnemius of the cat. American Journal of Anatomy 141:161–77.[AM]Google Scholar
Matthews, P. B. C. (1967) Vibration and the stretch reflex. In: Myotatic. kinesthetic and vestibular mechanisms, ed. de Reuck, A. V. S. & Kisight, J.. Churchill. [LJ]Google Scholar
Matthews, P. B. C. & Stein, R. (1969) The sensitivity of muscle spindle afferents to small sinusoidal changes of length. Journal of Physiology (London) 200:723–43. [LJ]CrossRefGoogle ScholarPubMed
McCrea, D. A. (1986) Spinal cord circuitry and motor reflexes. Exercise and Sport Sciences Reviews 14:105–42. [GEL]CrossRefGoogle ScholarPubMed
MeCue, M. P. & Guinan, J. J. Jr (1988) Anatomical and functional segregation in the stapedius motoneuron pool of the cat. Journal of Neurophysiology 60:1160–80. [MPM]CrossRefGoogle Scholar
McKeon, B. & Burke, D. (1983) Muscle spindle discharge in response to contraction of single motor units. Journal of Neurophysiology 49:291302. [aUW, SCG]Google Scholar
McKeon, B., Gandevia, S. & Burke, D. (1984) Absence of somatotopic projection of muscle siferents onto motoneurons of same muscle. journal of Neurophysiology 51:185–94. [aUW, DB, SCG]CrossRefGoogle ScholarPubMed
Melvill, Jones C. & Watt, D. C. D. (1971) Observations on the control of stepping and hopping movements in man. Journal of Physiology 219:709–27. [JD]Google Scholar
Mendell, L. M., Collins, W. F. & Koerber, H. R. (in press) How are Ia synapses distributed on spinal motoneurons to permit orderly recruitment? In: Segmental motor control, ed. Binder, M. D. & Mendell, L. M.. Oxford University Press. [LMM]Google Scholar
Merton, P. A. (1953) Speculations on the servo-control of movement. In: The spinal cord. ed. Wolstenholme, C. E.W.. Churchill. [AT]Google Scholar
Mesarovic, M. D. (1960) The control of multivariable systems. Wiley. [aUW]CrossRefGoogle Scholar
Milner-Brown, H. S., Stein, H. B. & Yemm, R. (1973) The orderly recruitment of human motor units during voluntary isometric contractions. Journal of Physiology (London) 230:359–70. [PB]Google Scholar
Muhl, Z. F. (1982) Active length-tension relstion and the effect of muscle pinnstion on fiber lengthening. Journal of Morphology 173:285–92. [aUW]CrossRefGoogle ScholarPubMed
Munson, J. B., Fleshman, J. W., Zengel, J. E. & Sypert, C. W. (1984) Synaptic and mechanical coupling between type-identified motor units and individual spindle afferents of medial gastrocnemius muscle of the cat. Journal of Neurophysiology 51:1268–83. [aUW, JBM]Google Scholar
Nardone, A., Romano, C. & Schieppati, M. (1989) Selective recruitmen of high-threshold human motor units during voluntary isotonic lengthening of active muscles. journal of Physiology (London) 409:451–71. [REB]CrossRefGoogle Scholar
Needhsm, D. M. (1926) Red and white muscle. Physiologicals 6:117. [aUW]Google Scholar
Nelson, S. G. & Mendell, L. M. (1978) Projectionof sngle knee flexor Ia fibers to homonymous and heteronymous motoneurons. journal of Neurophysiology 41:778–87. [aUW]CrossRefGoogle Scholar
Nemeth, P. M., (1989) Metabolic fiber types and influences on their transformation. In: Segmental motor systems, ed. Binder, M. D. & Mendell, L. M.. Oxford University Press. [aUW]Google Scholar
Ness, A. R. (1954) The mechanoreceptors of the rabbit mandibular incisor. Journal of Physiology (London) 126:475–93. [AT]Google Scholar
Nichols, T. B. (1989) The organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate cat. journal of Physiology (London) 410. [AWE]CrossRefGoogle Scholar
Nichols, T. H. & Houk, J. C. (1976) Improvement in linearity and regulation of stiffness that results from actions of stretch reflex. journal of Neurophysiology 39:119–42. [aUW]CrossRefGoogle ScholarPubMed
Niemann, U., Windhorst, U. & Meyer-Lohmann, J. (1986) Linear and nonlinear effects in the interactions of motor units and muscle spindle afferents. Experimental Brain Research 63:639–49. [aUW]CrossRefGoogle ScholarPubMed
O'Donovan, M. J., Pinter, M. J., Dum, R. P. & Burke, R. E. (1982) Actions of FDL and FHL muscles in intact cats: Functional dissociation between anatomical synergists. Journal of Neurophysiolagy 47:1126–43. [aUW, HH]Google Scholar
Ounjian, M., Roy, R. R., Eldred, E. & Edgerton, V. R. (1987) Muscle fiber lengths within single motor units in the cat tibialis anterior muscles. Society for Neuroscience Abstracts 13:1213. [VRE]Google Scholar
Parsons, D. W. (1982) The leg flexor muscle of Carcinus. I. Innervation and excitatory neuromuscular physiology. journal of Experimental Zoology 224:157–68. [FD]CrossRefGoogle Scholar
Parsons, D. W. & Mosse, P. R. L. (1982) The leg flexor muscle of Carcinus. II. Distribution of muscle fiber types. Journal of Experimental Zoology 224:169–75. [FD]CrossRefGoogle Scholar
Partridge, L. D. & Benton, L. A. (1981) Muscle, the motor. In: Handbook of physiology, sec. 1, The nervous system, vol. 2, Motor control, part 1, ed. Brooks, V. B.. American Physiological Society. [aUW]Google Scholar
Person, R. S. (1974) Rhythmic activity of a group of human motoneurones during voluntary contraction of a muscle. Electroencephalography and Clinical Neurophysiology 36:585–95. [aUW. HP]CrossRefGoogle ScholarPubMed
Person, R. S. (1985) Spinal mechanisms of muscle contraction control. Nsuka. (In Russian.) [RP]Google Scholar
Person, B. S. & Kozhina, G. V. (1978) Study of orthodromie and antidromic effects of nerve stimulation on single motoneurones of human hand muscles. Electromyography and Clinical Neurophysiology 18:437–56. [RP]Google ScholarPubMed
Person, B. S. & Kozhina, C. V. (1979) Study of spinal reflexes of human hand muscles on single motor units. Agrezsologie 20B:139–40. [HP]Google Scholar
Person, B. S. & Kozhina, C. V. (1986) Presynaptic inhibition and dis-inhibition of monosynaptic reflex in man, In: sMotor control, ed. Gantchev, G. N., Dimitrov, B. & Gatev, P.. Plenum Press. [HP]Google Scholar
Pette, D. & Staron, B. S. (1988) Molecular basis of the phenotypic characteristics of mammalian muscle fibres. In: Plasticity of the neuromuscular system. Ciba Foundation Symposium 138. Wiley. [AM]Google Scholar
Pette, D. & Tyler, K. R. (1983) Response of succinate dehydrogenase activity in fibres of rabbit tibialis anterior muscle to chronic nerve stimulation. Journal of Physiology (London) 338:19. [AM]CrossRefGoogle ScholarPubMed
Pette, D. & Vrbová, G. (1985) Neural control of phenotypic expression in mammalian muscle fibres. Muscle & Nerve 8:676–89. [DK]Google Scholar
Phillips, C. E. (1980) An arthropod muscle innervated by nine excitatory motor neurons. journal of Experimental Biology 88:249–58. [FD]CrossRefGoogle Scholar
Polit, A. & Bizzi, E. (1979) Characteristics of motor programs underlying arm movements m monkeys. journal of Neurophysiology 42:183–94. [AHC]CrossRefGoogle Scholar
Pratt, C. A., Yee, W. J., Chanauà, C. M. & Loeà, G. E. (1984) Organization of the cat sartorious motoneuron pool. Society for Neuroscience Abstracts 10:629. [REB, GEL]Google Scholar
Proehazka, A. & Hulliger, M. (1983) Muscle afferent function and its significance for motor control mechanisms during voluntary movements in cat, monkey and man. In: Motor control mechanisms in health and disease, ed. Desmedt, J. E.. Raven. [rUW]Google Scholar
Prochazka, A., Hulliger, M., Trend, P., Llewellyn, M. & Durmuller, N. (1989) Muscle afferent contribution to control of paw shakes in normal cats. Journal of Neurophysiology 61:550–62. [rUW]CrossRefGoogle ScholarPubMed
Prochazka, A., Westerman, R. A. & Ziccone, S. P. (1976) Discharge of single hindlimb afferents in the freely moving cat. Journal of Neurophysiology 39:10901104. [LMM]CrossRefGoogle ScholarPubMed
Proske, U. & Morgan, D. L. (1984) Stiffness of cat soleus muscle and tendon during activation of part of muscle. Journal of Neurophysiology 52:459–68. [UP]CrossRefGoogle ScholarPubMed
Rack, P. M. H. (1981) Limitations of somatosensory feedback in control of posture and movement. In: Handbook of physiology, sec. 1, The nervous systme, vol. 2, Motor control, part 1, ed. Brooks, V. B.. American Physiological Society. [aUW]Google Scholar
Reichmann, H. & Pette, D. (1983) A comparative microphotometric study of succinate dehydrogenase activity levels in Type I, IIA and IIB fibres of mammalian and human muscles. Histochemistry 70:2741. [AM]Google Scholar
Reichmann, H. & Pette, D. (1984) Glycerolphosphate oxidase and succinate dehydrogenase activities in IIA and IIB fibres of mouse and rabbit tibialis anterior muscles. Hitochemistry 80:429-43. [AM]CrossRefGoogle ScholarPubMed
Richmond, F. J. R. & Abrahams, V. C. (1975) Morphology and enzyme histochemistry of dorsal muscles of the cat neck. journal of Neuro physiology 38:1312–21. [aUW]Google ScholarPubMed
Richmond, F. J. R. & Abrahams, V. C. (1975 a) Morphology and distribution of muscle spindles in dorsal muscles of the cat neck. Journal of Neurophysiology 38:1322–39. [GEL]Google Scholar
Richmond, F. J. R. & Armstrong, J. B. (1988) Fiber architecture and histochemistry in the cat neck muscle, biventer cervicis. Journal of Neurophysiology 60:4659. [aUW]Google Scholar
Richmond, F. J. R. & Bakker, D. A. (1982) Anatomical organization and sensory receptor content of soft tissues surrounding upper cervical vertebrae in the cat. journal of Neurophysiology 48:4962. [GEL]CrossRefGoogle ScholarPubMed
Richmond, F. J. R., MacGillis, D. R. R. & Scott, D. A. (1985) Muscle fiber compartmentalization in cat splenius muscles. Journal of Neurophysiology 53:868–85. [aUW, VRE]CrossRefGoogle ScholarPubMed
Richmond, F. J. R. & Stuart, D. G. (1985) Distribution of sensory receptors in the flexor carpi radialis muscle of the cat. journal of Morphology 183:113. [aUW]Google Scholar
Rowe, R. W. D. (1981) Morphology of perimysial and endomysial connective tissue in skeletal muscle. Tissue and Cell 13:681–90. [VRE]Google Scholar
Rowlerson, A., Mascarello, F., Barker, D. & Saed, H. (1988) Muscle-spindle distribution in relation to fibre-type composition of masseter in mammals. Journal of Anatomy 161:3768. [JBM]Google ScholarPubMed
Russell, C. J., Dunbar, D. C., Rushmer, D. S., Macpherson, J. M. & Phillips, J. O. (1982) Differential activity of innervation subcompartments of cat lateral gastrocnemius during natural movements. Society of Neuroscience Abstracts 8:948. [aUW]Google Scholar
Sacks, R. D. & Roy, R. R. (1982) Architecture of the hind limb muscles of cats: Functional significance. Journal of Morphology 173:185–95. [aUW]Google Scholar
Salmons, S. & Henriksson, J. (1981) The adaptive response of skeletal muscle to increased use. Muscle & Nerve 4:94105. [DK]CrossRefGoogle ScholarPubMed
Schieppati, M. & Crenna, P. (1984) Natural cutaneous stimulation induces late and long-lasting facilitation of extensor motoneurones in the cat. Brain Research 293:259–67. [JD]CrossRefGoogle ScholarPubMed
Schwestka, R., Windhorst, U. & Schamberg, R. (1981) Patterns of parallel signal transmission between multiple α-efferents and multiple Ia afferents in the cat semitendinosus muscle. Experimental Brain Research 43:3446. [aUW]CrossRefGoogle ScholarPubMed
Scott, J. C. & Mendell, L. M. (1976) Individual EPSPs produced by single triceps surae la afferent fibers in homonymous and heteronymous motoneurons. Journal of Neurophysiology 39:679–91. [aUW, JHA]CrossRefGoogle Scholar
Scott, J. J. A. & Young, H. (1987) The number and distribution of muscle spindles and tendon organs in the peroneal muscles of the cat. journal of Anatomy 151:143–55. [LJ]Google ScholarPubMed
Shefchyk, S. J., Stein, R. B. & Jordan, L. M. (1984) Synaptic transmission from muscle afferents during fictive locomotion in the mesencephalic cat. Journal of Neurophysiology 51:986–97. [rUW]Google Scholar
Sherrington, C. S. (1910) Flexion-reflex of the limb, crossed extension reflex, and reflex stepping and standing. Journal of Physiology (London) 40:28121. [aUW, HH]CrossRefGoogle ScholarPubMed
Shinoda, Y., Yokota, J.-I. & Futami, T. (1981) Divergent projection of individual corticospinal axons to motorneurones of multiple muscles in the monkey. Neuroscience Letters 23:712. [JHA]CrossRefGoogle Scholar
Sjöström, M., Downham, D. Y. & Lexell, J. (1986) Distribution of different fiber types in human skeletal muscles: Why is there a difference within a fascicle? Muscle & Nerve 9:3036. [SCG]Google Scholar
Smith, A., Moore, C. A. & Pratt, C. A. (1985) Distribution of the human jaw stretch reflex response elicited by percutaneous, localized stretch of jaw- closing muscles. Experimental Neurology 88:544–61. [DB, SCG]Google Scholar
Smith, A., Zimmermann, G. N. & Abbas, P. J. (1981) Recruitment patterns of motor units in speech production. Speech and Hearing Research 24:567–76. [RP]CrossRefGoogle ScholarPubMed
Smith, J. L., Betts, B., Edgerton, R. & Zernicke, R. F. (1980) Rapid ankle extension during paw shakes: Selective recruitment of fast ankle extensors. Journal of Neurophysiology 43:612–20. [aUW]CrossRefGoogle ScholarPubMed
Sojka, P., Johansson, H., Sjölander, P., Lorentzon, R. & Djupsjöbacka, M. (1989) Fusimotor neurones can be reflesly influenced by activity in receptor afferents from the posterior cruciate ligament. Brain Research 483:177–83. [HJ]CrossRefGoogle ScholarPubMed
Spector, S. A., Gardiner, P. F., Zernicke, R. F., Roy, R. F. & Edgerton, V. R. (1980) Muscle architecture and the force velocity characteristics of the cat soleus and medial gastrocnemius: Implications for motor control. journal of Neurophysiology 44:951–60. [aUW]Google Scholar
Stein, R. B. & Lee, R. G. (1981) Tremor and clonus. In: Handbook of physiology, sec. 1, The nervous system, vol. 2, Motor control, part 1, ed. Brooks, V. B.. American Physiological Society. [aUW]Google Scholar
Stein, R. B. & Očuztörehi, M. N. (1976) Tremor and other oscillations in neuro-muscular systems. Biological Cybernetics 22:147–57. [aUW]Google Scholar
Stephens, J. A., Reinking, R. M. & Stuart, D. G. (1975) The motor units of cat medial gastrocnemius: Electrical and mechanical properties as a function of muscle length. Journal of Morphology 146:495512. [aUW]CrossRefGoogle ScholarPubMed
Stephens, J. A. & Usherwood, T. P. (1977) The mechanical properties of human motor units with special reference to their fatiguability and recruitment threshold. Brain Research 125:9197. [PB]Google Scholar
Stokes, D. R., Vitale, A. J. & Morgan, C. R. (1979) Enzyme histochemistry of the mesocoxal muscles of Periplaneta americana. Cell and Tissue Research 198:175–89. [FD]Google Scholar
Stuart, D. G. (1987) Muscle receptors, mammalian, spinal actions. In: Encyclopedia of neuroscience, vol. 2, ed. Adelman, G.. Birkhauser. [rUW]Google Scholar
Stuart, D. G. & Enoka, R. M. (1983) Motoneurons, motor units, and the size principle. In: The clinical neurosciences, vol. 5, Neurobiology, ed. Rosenberg, R. N.. Churchill Livingstone. [aUW]Google Scholar
Stuart, D. G., Hamm, T. M. & Vanden, Noven S. (1988) Partitioning of monosynaptic la excitation to motoneurons according to neuromuscular topography: Generality and functional implications. Progress in Neurobiology 30:437–47. [aUW]CrossRefGoogle Scholar
Swett, J. E. & Eldred, E. (1960) Distribution and numbers of stretch receptors in medial gastrocnemius and soleus muscles of the cat. The Anatomical Record 137:453–60. [VRE]CrossRefGoogle Scholar
Swett, J. E., Eldred, E. & Buchwald, J. S. (1970) Somatotopic cord-to-muscle relations in efferent innervation of cat gastroenemius. American Journal of Physiology 219:762–66. [DK]CrossRefGoogle Scholar
Székely, G. & Antal, M. (1980) Significance of the dendritic pattern in the function of the neuron. In: Advances in physiological sciences, vol. 30: Neural communication and control, ed. Székehy, C.Lábos, & Damjanovich, S.. Pergamon Press and Akadémial Kiadó (Budapest). [CS]Google Scholar
Székely, G. & Czéh, G. (1971) Muscle activities of partially innervated limbs during locomotion in Ambystoma. Acta Physiologica Academiae Scientiarum Hungaricae 40:268–86. [GS]Google ScholarPubMed
Székely, G. & Czéh, G. (1976) Organization of locomotion. In: Frog neurobiology. ed. Lhinás, R & Precht, W.. Springer-Verlag. [GS]Google Scholar
Székely, G., Matesz, C. & Antal, M. (1980) Different dendritic arborization patterns of motoneurons in various places of the rat's lumbosacral spinal cord. Acta Biologica Academiae Scientiarum Hungaricae 31:305–19. [GS]Google Scholar
Taylor, A. (1981) Proprioception in the strategy of jaw movement control. In: Oral-facial and sensory functions, ed. Kawamura, Y. & Dubner, R.. Tokyo: Quintessence. [AT]Google Scholar
Taylor, A., Cody, F. W. J. & Bosley, M. A. (1973) Histochemical and mechanical properties of the jaw muscles of the cat. Experimental Neurology 38:99109. [AT]CrossRefGoogle ScholarPubMed
Teig, E. & Dahl, H. A. (1972) Actomyosin ATPase activity of middle ear muscles in the cat. Histochemie 29:17. [MPM]CrossRefGoogle ScholarPubMed
ter, Haar Romeny B. M., Denier, van der Con J. J. & Gielen, C. C. A. M. (1982) Changes in recruitment order of motor units in the human biceps muscle. Experimental Neurology 78:360–68. [aUW, CCAMG, RP]Google Scholar
ter, Haar Romeny B. M., Denier, van der Con J. J. & Gielen, C. C. A. M. (1984) Relation between location of a motor unit in the human biceps brachii and its critical firing level for different tasks. Experimental Neurology 85:631–50. [aUW, CCAMG, DK]Google Scholar
Theophilidis, G. & Burns, M. D. (1983) The innervation of the mesothoracic flexor tibiae muscle of the locust. journal of Experimental Biology 105:373–88. [FD]CrossRefGoogle Scholar
Theriault, E. & Diamond, J, (1988 a) Nociceptive cutaneous stimuli evoke localized contractions in a skeletal muscle. Journal of Neurophysiology 60:446–62. [aUW]CrossRefGoogle Scholar
Theriault, E. & Diamond, J (1988 b) Intrinsic organization of the rat cutaneous trunci motor nucleus. Journal of Neurophysiology 60:463–77. [aUW]Google Scholar
Thomas, C. K., Ross, B. H. & Calancie, B. (1987) Human motor unit recruitment during isometric contractions and repeated dynamic movements. journal of Neurophysiology 57:311–24. [aUW]Google Scholar
Thomas, C. K., Ross, B. H. & Stein, R. B. (1986) Motor unit recruitment in human first dorsal interosseus muscle for static contractions in three different directions. Journal of Neurophysiology 55:1017–29. [aUW]Google Scholar
Thomas, J. S., Schmidt, E. M. & Hambrecht, F. T. (1978) Facility of motor unit control during tasks defined directly in terms of unit behaviors. Experimental Neurology 59:384–95. [aUW]Google Scholar
Tidball, J. G. & Daniel, T. L. (1986) Elastic energy storage in rigored skeletal muscle cells under physiological loading conditions. American Journal of Physiology 250 (Regulatory, Integrative, and Comparative Physiology 19):R5664. [VRE]CrossRefGoogle Scholar
Trotter, J. A., Samora, A., Hsi, K. & Wofsy, C. (1987) Stereological analysis of the muscle-tendon junction in the aging mouse. The Anatomical Record 218:288–93. [VRE]CrossRefGoogle ScholarPubMed
Vacher, S. R., Kobler, J. B. & Guinan, J. J. Jr. (1987) Brainstem locations of physiologically characterized stapedius motoneurons in the cat: Single unit labeling. Society of Neuroscience Abstracts 13:549. [MPM]Google Scholar
Vacher, S. R., Guinan, J. J. Jr & Kobler, J. B. (in press) Intracellularly labeled stapedius-motoneuron cell bodies in the cat are spatially organized according to their physiologic responses. Journal of Comparative Neurology. [MPM]Google Scholar
Vanden, Noveis S., Hamm, T. M. & Stuart, D. G. (1986) Partitioning of monosynaptic Ia excitatory postsynaptic potentials in the motor nucleus of the cat lateral gastroenemius muscle. Journal of Neurophysiology 55:569–86. [aUW, DB, SCG, GEL, LMM]Google Scholar
van, der Wal J. C. & Drukker, J. (1988) The occurrence of muscle spindles in relation to the architecture of the connective tissue in the lateral cubital region of the rat. In: Mechanoreceptors: Development, structure and function, ed. Hnik, P., Soukup, T., Vejsada, R. & Zelena, J.. Plenum. [AM]Google Scholar
van, der Wal J. C., Strassman, T., Drukker, J. & Halata, Z. (1988) Sensory nerve endings in the deep lateral cubital region: A topographical and ultrastructural study in the rat. In: Mechanoreceptors: Development, structure and function, ed. Hnik, P., Soukup, T., Vejsada, H. & Zelena, J.. Plenum. [AM]Google Scholar
van, Zuylen E. J., Gielen, C. C. A. M. & Denier, van der Gon J. J. (1988) Coordination and inhomogeneous activation of human arm muscles during isometric torques. Journal of Neurophysiology 60:1523–48. [REB, CCAMG]Google Scholar
Walmsley, B., Hodgson, J. A. & Burke, R. E. (1978) Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. Journal of Neurophysiology 41:1203–61. [aUW]Google Scholar
Weeks, O. I. & English, A. W. (1985) Compartmentalization of the cat lateral gastrocnemius motor nucleus. Journal of Comparative Neurology 235:255–67. [DK, GEL, JBM]CrossRefGoogle ScholarPubMed
Westling, G. & Johansson, R. S. (1984) Factors influencing the force control during precision grip. Experimental Brain Research 53:277–84. [JHA]CrossRefGoogle ScholarPubMed
Wilder, B. J., Kenaston, T. C., Mabe, P. A. Jr, Dulin, T. L., Gergan, J. A., Hook, F. R. Jr, Williams, M. & Markee, J. E. (1953) Observations on fatigue patterns of anterior tibial muscles. American Journal of Physical Medicine 32:331–37. [aUW]Google Scholar
Wilson, J. A. (1979) The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy, Journal of Neurobiology 10:4165. [FD]Google Scholar
Windhorst, U. (1973) Das dynamische Verhalten deefferentierter primarer Muskelspindelendigungen aus pratibislen Flexoren der Katze in Abhangigkeit von ihrem statischen Verhalten. Medizinische Dissertation, University of Göttingen. [aUW]Google Scholar
Windhorst, U. (1978) Considerations on mechanisms of focused signal transmission in the multi-channel muscle stretch reflex system. Biological Cybernetics 31:8190. [aUW]CrossRefGoogle Scholar
Windhorst, U. (1979 a) Auxiliary spinal networks for signal focusing in the segmental stretch reflex system. Biological Cybernetics 34:125–35. [aUW]CrossRefGoogle Scholar
Windhorst, U. (1979 b) A possible partitioning of segmental muscle stretch reflex into incompletely de-coupled parallel loops. Biological Cybernetics 34:205–13. [aUW]CrossRefGoogle ScholarPubMed
Windhorst, U. (1984) Neural activity states in different forms of physiological tremor: Facts and hypotheses. Biological Cybernetics 50:143–54. [aUW]Google Scholar
Windhorst, U. (1986) The role of proprioceptive and recurrent inhibitory feedback into motor control. Neuroscience Letters, Supplement 26:S363. [aUW]Google Scholar
Windhorst, U. (1988) How brain-like is the spinal cord? Interacting cell assemblies in the nervous system. Springer-Verlag. [aUW]Google Scholar
Windhorst, U. & Meyer-Lohmann, J. (1977) The influence of extrafusal muscle activity on the discharge patterns of primary muscle spindle endings. Pflügers Archiv European Journal of Physiology 372:131–38. [HJ]Google Scholar
Woittiez, R. D., Huijing, P. A. & Rozendal, R. H. (1983) Influence of muscle architecture on the length-force diagram of mammalian muscle. Pflügers Archiv European Journal of Physiology 399:275–79. [aUW]Google Scholar
Yellin, H. (1969) A histochemical study of muscle spindles and their relationship to extrafusal fiber types in the rat. American Journal of Anatomy 125:3146. [AM]Google Scholar
Zajac, F. E. & Faden, J. S. (1985) Relationship among recruitment order, axonal conduction velocity, and muscle unit properties of type-identified motor units in cat plantaris muscle. Journal of Neurophysiology 53:1303–22. [aUW]CrossRefGoogle ScholarPubMed
Zajac, F. E. & Gordon, M. E. (1989) Determining muscle's force and action in multi-articular movement. Exercise and Sport Sciences Reviews 17:187230. [GEL]Google ScholarPubMed
Zenker, W., Sandoz, P. A. & Neuhuber, W. (1988) The distribution of anterogradely labeled I-IV primary afferents in histochemically defined compartments of the rat's sternomsstoid muscle. Anatomy and Embryology 177:235–43. [aUW]CrossRefGoogle ScholarPubMed