Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T18:21:47.708Z Has data issue: false hasContentIssue false

Optical holography as an analogue for a neural reuse mechanism1

Published online by Cambridge University Press:  22 October 2010

Ann Speed
Affiliation:
Sandia National Laboratories2Albuquerque, NM 87185-1188. aespeed@sandia.govwww.sandia.govsjverzi@sandia.govjswagne@sandia.govcewarr@sandia.gov
Stephen J. Verzi
Affiliation:
Sandia National Laboratories2Albuquerque, NM 87185-1188. aespeed@sandia.govwww.sandia.govsjverzi@sandia.govjswagne@sandia.govcewarr@sandia.gov
John S. Wagner
Affiliation:
Sandia National Laboratories2Albuquerque, NM 87185-1188. aespeed@sandia.govwww.sandia.govsjverzi@sandia.govjswagne@sandia.govcewarr@sandia.gov
Christina Warrender
Affiliation:
Sandia National Laboratories2Albuquerque, NM 87185-1188. aespeed@sandia.govwww.sandia.govsjverzi@sandia.govjswagne@sandia.govcewarr@sandia.gov

Abstract

We propose an analogy between optical holography and neural behavior as a hypothesis about the physical mechanisms of neural reuse. Specifically, parameters in optical holography (frequency, amplitude, and phase of the reference beam) may provide useful analogues for understanding the role of different parameters in determining the behavior of neurons (e.g., frequency, amplitude, and phase of spiking behavior).

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1.

The authors of this commentary are employed by a government agency, and as such this commentary is considered a work of the U.S. government and not subject to copyright within the United States. Each commentator contributed equally to this response and are thus listed in alphabetical order.

References

Cormier, S. M. (1987) The structural processes underlying transfer of training. In: Transfer of learning: Contemporary research and applications, ed. Cormier, S. M. & Hagman, J. D., pp. 152–82. Academic Press.Google Scholar
Gick, M. L. & Holyoak, K. J. (1983) Schema induction and analogical transfer. Cognitive Psychology 15:138.CrossRefGoogle Scholar
Hunt, R. R. (1995) The subtlety of distinctiveness: What von Restorff really did. Psychonomic Bulletin and Review 2:105–12.Google Scholar
Kalman, E., Kobras, S., Grawert, F., Maltezos, G., Hanssen, H., Coufal, H. & Burr, G. W. (2004) Accuracy and scalability in holographic content-addressable storage. Paper presented at the Conference on Lasers and Electro-Optics (CLEO). San Francisco, CA, May 2004.Google Scholar
Novick, L. R. (1988) Analogical transfer, problem similarity, and expertise. Journal of Experimental Psychology: Learning, Memory, and Cognition 14:510–20.Google ScholarPubMed
Plate, T. A. (1995) Holographic reduced representations. IEEE Transactions on Neural Networks 6(3):623–41.Google Scholar
Psaltis, D. & Burr, G. W. (1998) Holographic data storage. Computer February 1998:5260.Google Scholar
Roodenrys, S. & Miller, L. M. (2008) A constrained Rasch model of trace redintegration in serial recall. Memory and Cognition 36:578–87.CrossRefGoogle ScholarPubMed
Sutherland, J. G. (1992) The holographic neural method. In: Fuzzy, holographic, and parallel intelligence, ed. Soucek, B. & the IRIS Group, pp. 792. Wiley.Google Scholar
Wess, O. J. (2008) A neural model for chronic pain relief by extracorporeal shockwave treatment. Urological Research 36:327–34.Google Scholar
Westlake, P. R. (1970) The possibilities of neural holographic processes within the brain. Biological Cybernetics 7(4):129–53.Google ScholarPubMed
Wilshaw, D. J., Buneman, O. P. & Longuet-Higgins, H. C. (1969) Non-holographic associative memory. Nature 222:960–62.Google Scholar