Published online by Cambridge University Press: 04 February 2010
Shastri & Ajjanagadde (1993) (S&A) argue convincingly that both structured connectionist networks and parallel dynamic inferencing are necessary for reflexive reasoning - a kind of inferencing and reasoning that occurs rapidly, spontaneously, and without conscious effort, and which seems necessary for everyday tasks such as natural language understanding. As S&A describe, reflexive reasoning requires a solution to the dynamic binding problem, that is, how to encode systematic and abstract knowledge and instantiate it in specific situations to draw appropriate inferences. Although symbolic artificial intelligence systems trivially solve the dynamic binding problem using computers' registers and pointers, it has remained a difficult problem for connectionist systems (see Fodor & Pylyshyn 1988). S&A's temporal synchrony solution to the dynamic binding problem using synchronous firing of argument units and the entities that are bound to them illustrates one way in which connectionist networks can do thisusing a constrained but important class of long-term knowledge rules. Their structured connectionist solution allows dynamic inferencing to proceed in parallel and therefore has a number of advantages for reflexive reasoning over most other connectionist and symbolic systems.