Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T13:53:55.142Z Has data issue: false hasContentIssue false

Pathways of tactile-visual crossmodal interaction for perception

Published online by Cambridge University Press:  20 August 2007

Norihiro Sadato
Affiliation:
Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi, 444-8585, Japan;sadato@nips.ac.jpnakashit@nips.ac.jpsdaisuke@nips.ac.jphttp://www.nips.ac.jp/fmritms/english/index.html Japan Science and Technology Corporation (JST) and Research Institute of Science and Technology for Society (RISTEX), Kawaguchi, Japan.
Satoru Nakashita
Affiliation:
Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi, 444-8585, Japan;sadato@nips.ac.jpnakashit@nips.ac.jpsdaisuke@nips.ac.jphttp://www.nips.ac.jp/fmritms/english/index.html
Daisuke N. Saito
Affiliation:
Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi, 444-8585, Japan;sadato@nips.ac.jpnakashit@nips.ac.jpsdaisuke@nips.ac.jphttp://www.nips.ac.jp/fmritms/english/index.html Japan Science and Technology Corporation (JST) and Research Institute of Science and Technology for Society (RISTEX), Kawaguchi, Japan.

Abstract

There is a task-specificity in the visual-tactile interaction for perception: The polymodal posterior parietal cortex is related to the comparison of the shapes coded by different sensory modalities, whereas the lateral occipital complex is the part of the network for multimodal shape identification. These interactions may be mediated by some latent pathways potentiated by sensory deprivation or learning.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amedi, A., Malach, R., Hendler, T., Peled, S. & Zohary, E. (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nature Neuroscience 4:324–30.CrossRefGoogle ScholarPubMed
Burton, H., McLaren, D. G. & Sinclair, R. J. (2006) Reading embossed capital letters: An fMRI study in blind and sighted individuals. Human Brain Mapping 27:325–39.CrossRefGoogle ScholarPubMed
Burton, H., Sinclair, R. J. & McLaren, D. G. (2004) Cortical activity to vibrotactile stimulation: An fMRI study in blind and sighted individuals. Human Brain Mapping 23:210–28.CrossRefGoogle ScholarPubMed
Harada, T., Saito, D. N., Kashikura, K., Sato, T., Yonekura, Y., Honda, M. & Sadato, N. (2004) Asymmetrical neural substrates of tactile discrimination in humans: A functional magnetic resonance study. Journal of Neuroscience 24:7524–30.CrossRefGoogle Scholar
Sadato, N., Okada, T., Kubota, K. & Yonekura, Y. (2004) Tactile discrimination activates the visual cortex of the recently blind naive to Braille: A functional magnetic resonance imaging study in humans. Neuroscience Letters 359:4952.CrossRefGoogle Scholar
Saito, D. N., Okada, T., Honda, M., Yonekura, Y. & Sadato, N. (2006) Practice makes perfect: The neural substrates of tactile discrimination by Mah-Jong experts include the primary visual cortex. BMC Neuroscience 7(Article No. 79). Available at: http://www.biomedcentral.com/1471-2202/7/79.CrossRefGoogle ScholarPubMed
Saito, D. N., Okada, T., Morita, Y., Yonekura, Y. & Sadato, N. (2003) Tactile-visual cross-modal shape matching: A functional MRI study. Brain Research: Cognitive Brain Research 17:1425.Google ScholarPubMed