Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T09:42:31.017Z Has data issue: false hasContentIssue false

Quinian bootstrapping or Fodorian combination? Core and constructed knowledge of number

Published online by Cambridge University Press:  19 May 2011

Elizabeth S. Spelke
Affiliation:
Department of Psychology, Harvard University, Cambridge, MA 02138. spelke@wjh.harvard.edu

Abstract

According to Carey (2009), humans construct new concepts by abstracting structural relations among sets of partly unspecified symbols, and then analogically mapping those symbol structures onto the target domain. Using the development of integer concepts as an example, I give reasons to doubt this account and to consider other ways in which language and symbol learning foster conceptual development.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carey, S. (2009) The origin of concepts. Oxford University Press.CrossRefGoogle Scholar
Csibra, G. & Gergely, G. (2009) Natural pedagogy. Trends in Cognitive Sciences 13(4):148–53.CrossRefGoogle ScholarPubMed
Dehaene, S. (2009) Origins of mathematical intuitions: The case of arithmetic. Annals of the New York Academy of Sciences 1156:232–59.CrossRefGoogle ScholarPubMed
Dehaene, S. & Cohen, L. (1997) Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex 33:219–50.CrossRefGoogle ScholarPubMed
Fodor, J. A. (1975) The language of thought. Harvard University Press.Google Scholar
Frank, M. C., Everett, D. L., Fedorenko, E. & Gibson, E. (2008) Number as cognitive technology: Evidence from Pirahã language and cognition. Cognition 108:819–24.CrossRefGoogle ScholarPubMed
Gilmore, C. K., McCarthy, S. E. & Spelke, E. S. (2007) Symbolic arithmetic knowledge without instruction. Nature 447:589–92.Google Scholar
Huang, Y. T., Spelke, E. S. & Snedeker, J. (2010) When is four far more than three? Children's generalization of newly acquired number words. Psychological Science 21(4):600606.CrossRefGoogle ScholarPubMed
Izard, V., Sann, C., Spelke, E. S. & Streri, A. (2009) Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences 106(25):10382–85.Google Scholar
Siegler, R. S. & Jenkins, E. A. (1989) How children discover new strategies. Erlbaum.Google Scholar
Siegler, R. S. & Opfer, J. E. (2003) The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science 14(3):237–43.CrossRefGoogle ScholarPubMed
Spelke, E. S. (2003a) Core knowledge. In: Attention and performance, vol. 20: Functional neuroimaging of visual cognition, ed. Kanwisher, N. & Duncan, J., pp. 2956. Oxford University Press.Google Scholar
Spelke, E. S. (2003b) What makes us smart? Core knowledge and natural language. In: Language in mind: Advances in the investigation of language and thought, ed. Gentner, D. & Goldin-Meadow, S., pp. 277311. MIT Press.CrossRefGoogle Scholar
Waxman, S. R. & Markow, D. B. (1995) Words as invitations to form categories: Evidence from 12- to 13-month-old infants. Cognitive Psychology 29(3):257302.Google Scholar