Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-30T21:02:06.759Z Has data issue: false hasContentIssue false

Suboptimality in perceptual decision making

Published online by Cambridge University Press:  27 February 2018

Dobromir Rahnev
Affiliation:
School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332. drahnev@gmail.comrahnevlab.gatech.edu
Rachel N. Denison
Affiliation:
Department of Psychology and Center for Neural Science, New York University, New York, NY 10003. rachel.denison@nyu.eduracheldenison.com

Abstract

Human perceptual decisions are often described as optimal. Critics of this view have argued that claims of optimality are overly flexible and lack explanatory power. Meanwhile, advocates for optimality have countered that such criticisms single out a few selected papers. To elucidate the issue of optimality in perceptual decision making, we review the extensive literature on suboptimal performance in perceptual tasks. We discuss eight different classes of suboptimal perceptual decisions, including improper placement, maintenance, and adjustment of perceptual criteria; inadequate tradeoff between speed and accuracy; inappropriate confidence ratings; misweightings in cue combination; and findings related to various perceptual illusions and biases. In addition, we discuss conceptual shortcomings of a focus on optimality, such as definitional difficulties and the limited value of optimality claims in and of themselves. We therefore advocate that the field drop its emphasis on whether observed behavior is optimal and instead concentrate on building and testing detailed observer models that explain behavior across a wide range of tasks. To facilitate this transition, we compile the proposed hypotheses regarding the origins of suboptimal perceptual decisions reviewed here. We argue that verifying, rejecting, and expanding these explanations for suboptimal behavior – rather than assessing optimality per se – should be among the major goals of the science of perceptual decision making.

Type
Target Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Authors D. Rahnev and R. N. Denison contributed equally to this work.

References

Abrahamyan, A., Luz Silva, L., Dakin, S. C., Carandini, M. & Gardner, J. L. (2016) Adaptable history biases in human perceptual decisions. Proceedings of the National Academy of Sciences of the United States of America 113(25):E3548–57. Available at: http://www.pnas.org/lookup/doi/10.1073/pnas.1518786113.Google Scholar
Abrams, J., Barbot, A. & Carrasco, M. (2010) Voluntary attention increases perceived spatial frequency. Attention, Perception, & Psychophysics 72(6):1510–21. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=20675797&retmode=ref&cmd=prlinks.Google Scholar
Acerbi, L. (2014) Complex internal representations in sensorimotor decision making: A Bayesian investigation. University of Edinburgh. Available at: https://www.era.lib.ed.ac.uk/bitstream/handle/1842/16233/Acerbi2015.pdf?sequence=1&isAllowed=y.Google Scholar
Acerbi, L., Vijayakumar, S. & Wolpert, D. M. (2014b) On the origins of suboptimality in human probabilistic inference. PLoS Computational Biology 10(6):e1003661. Available at: https://doi.org/10.1371/journal.pcbi.1003661.Google Scholar
Acerbi, L., Wolpert, D. M. & Vijayakumar, S. (2012) Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing. PLoS Computational Biology 8(11):e1002771. Available at: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002771.Google Scholar
Ackermann, J. F. & Landy, M. S. (2015) Suboptimal decision criteria are predicted by subjectively weighted probabilities and rewards. Attention, Perception & Psychophysics 77(2):638–58. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25366822.Google Scholar
Adams, J. K. (1957) A confidence scale defined in terms of expected percentages. American Journal of Psychology 70(3):432–36.Google Scholar
Adams, W. J. (2016) The development of audio-visual integration for temporal judgements. PLOS Computational Biology 12(4):e1004865. Available at: http://dx.plos.org/10.1371/journal.pcbi.1004865.Google Scholar
Adelson, E. H. (1993) Perceptual organization and the judgment of brightness. Science 262(5142):2042–44.Google Scholar
Adler, W. T. & Ma, W. J. (2018a) Comparing Bayesian and non-Bayesian accounts of human confidence reports. PLoS Computational Biology. https://doi.org/10.1371/journal.pcbi.1006572.Google Scholar
Adler, W. T. & Ma, W. J. (2018b) Limitations of proposed signatures of Bayesian confidence. Neural Computation 30(12):3327–54. https://www.mitpressjournals.org/doi/abs/10.1162/neco_a_01141.Google Scholar
Ais, J., Zylberberg, A., Barttfeld, P. & Sigman, M. (2015) Individual consistency in the accuracy and distribution of confidence judgments. Cognition 146:377–86. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26513356.Google Scholar
Aitchison, L., Bang, D., Bahrami, B. & Latham, P. E. (2015) Doubly Bayesian analysis of confidence in perceptual decision-making. PLoS Computational Biology 11(10):e1004519.Google Scholar
Alais, D. & Burr, D. (2004) The ventriloquist effect results from near-optimal bimodal integration. Current Biology 14(3):257–62. doi:10.1016/j.cub.2004.01.029.Google Scholar
Allen, M., Frank, D., Schwarzkopf, D. S., Fardo, F., Winston, J. S., Hauser, T. U. & Rees, G. (2016) Unexpected arousal modulates the influence of sensory noise on confidence. eLife 5:e18103. Available at: http://elifesciences.org/lookup/doi/10.7554/eLife.18103.Google Scholar
Anderson, B. L., O'Vari, J. & Barth, H. (2011) Non-Bayesian contour synthesis. Current Biology 21(6):492–96. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0960982211001746.Google Scholar
Anton-Erxleben, K., Henrich, C. & Treue, S. (2007) Attention changes perceived size of moving visual patterns. Journal of Vision 7(11):5.19. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=17997660&retmode=ref&cmd=prlinks.Google Scholar
Anton-Erxleben, K., Herrmann, K. & Carrasco, M. (2013) Independent effects of adaptation and attention on perceived speed. Psychological Science 24(2):150–59. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23241456&retmode=ref&cmd=prlinks.Google Scholar
Balcetis, E. (2016) Approach and avoidance as organizing structures for motivated distance perception. Emotion Review 8(2):115–28. Available at: https://doi.org/10.1177/1754073915586225.Google Scholar
Balcı, F., Simen, P., Niyogi, R., Saxe, A., Hughes, J. A., Holmes, P. & Cohen, J. D. (2011b) Acquisition of decision making criteria: Reward rate ultimately beats accuracy. Attention, Perception & Psychophysics 73(2):640–57. Retrieved September 11, 2015. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3383845&tool=pmcentrez&rendertype=abstract.Google Scholar
Bang, J. W. & Rahnev, D. (2017) Stimulus expectation alters decision criterion but not sensory signal in perceptual decision making. Scientific Reports 7:17072. Available at: http://www.nature.com/articles/s41598-017-16885-2.Google Scholar
Bang, J. W., Shekhar, M. & Rahnev, D. (in press) Sensory noise increases metacognitive efficiency. Journal of Experimental Psychology. http://dx.doi.org/10.1037/xge0000511.Google Scholar
Baranski, J. V. & Petrusic, W. M. (1994) The calibration and resolution of confidence in perceptual judgments. Perception & Psychophysics 55(4):412–28. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8036121.Google Scholar
Baranski, J. V. & Petrusic, W. M. (1995) On the calibration of knowledge and perception. Canadian Journal of Experimental Psychology 49(3):397407. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9183984.Google Scholar
Baranski, J. V. & Petrusic, W. M. (1999) Realism of confidence in sensory discrimination. Perception & Psychophysics 61(7):1369–83. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10572465.Google Scholar
Barlow, H. B. (1961) Possible principles underlying the transformation of sensory messages. In: Sensory communication, ed. Rosenblith, W. A., pp. 217–34. MIT Press.Google Scholar
Barlow, H. B. (1990) A theory about the functional role and synaptic mechanism of visual after-effects. In: Vision: Coding and efficiency, ed. Blakemore, C., pp. 363–75. Cambridge University Press. Available at: http://books.google.com/books?hl=en&lr=&id=xGJ_DxN3eygC&oi=fnd&pg=PA363&dq=a+theory+about+the+functional+role+and+synaptic+mechanism+of+visual+after+effects&ots=VsSUzK0vpB&sig=lZX28LU68XpGk9T8zoLwY8WOJBs.Google Scholar
Battaglia, P. W., Jacobs, R. A. & Aslin, R. N. (2003) Bayesian integration of visual and auditory signals for spatial localization. Journal of the Optical Society of America A, Optics and Image Science 20(7):1391–97.Google Scholar
Battaglia, P. W., Kersten, D. & Schrater, P. R. (2011) How haptic size sensations improve distance perception. PLoS Computational Biology 7(6):e1002080. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=21738457&retmode=ref&cmd=prlinks.Google Scholar
Bays, P. M. & Dowding, B. A. (2017) Fidelity of the representation of value in decision-making. PLoS Computational Biology 13(3):e1005405. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28248958.Google Scholar
Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E. & Pouget, A. (2012) Not noisy, just wrong: The role of suboptimal inference in behavioral variability. Neuron 74(1):3039. Available at: https://doi.org/10.1016/j.neuron.2012.03.016.Google Scholar
Berger, J. O. (1985) Statistical decision theory and Bayesian analysis. Springer.Google Scholar
Berliner, J. E. & Durlach, N. I. (1973) Intensity perception. IV. Resolution in roving-level discrimination. Journal of the Acoustical Society of America 53(5):1270–87. Available at: http://www.ncbi.nlm.nih.gov/pubmed/4712555.Google Scholar
Björkman, M., Juslin, P. & Winman, A. (1993) Realism of confidence in sensory discrimination: The underconfidence phenomenon. Perception & Psychophysics 54(1):7581. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8351190.Google Scholar
Bogacz, R. (2007) Optimal decision-making theories: Linking neurobiology with behaviour. Trends in Cognitive Sciences 11(3):118–25. Available at: http://www.sciencedirect.com/science/article/pii/S1364661307000290.Google Scholar
Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. (2006) The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review 113(4):700–65. Available at: http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.113.4.700.Google Scholar
Bogacz, R., Hu, P. T., Holmes, P. J. & Cohen, J. D. (2010) Do humans produce the speed-accuracy trade-off that maximizes reward rate? Quarterly Journal of Experimental Psychology 63(5):863–91. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2908414&tool=pmcentrez&rendertype=abstract.Google Scholar
Bohil, C. J. & Maddox, W. T. (2001) Category discriminability, base-rate, and payoff effects in perceptual categorization. Perception & Psychophysics 63(2):361–76.Google Scholar
Bohil, C. J. & Maddox, W. T. (2003a) On the generality of optimal versus objective classifier feedback effects on decision criterion learning in perceptual categorization. Memory & Cognition 31(2):181–98.Google Scholar
Bohil, C. J. & Maddox, W. T. (2003b) A test of the optimal classifier's independence assumption in perceptual categorization. Perception & Psychophysics 65(3):478–93.Google Scholar
Bossaerts, P. & Murawski, C. (2017) Computational complexity and human decision-making. Trends in Cognitive Sciences 21(12):917–29. Available at: http://dx.doi.org/10.1016/j.tics.2017.09.005.Google Scholar
Bowers, J. S. & Davis, C. J. (2012a) Bayesian just-so stories in psychology and neuroscience. Psychological Bulletin 138(3):389414.Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22545686&retmode=ref&cmd=prlinks.Google Scholar
Bowers, J. S. & Davis, C. J. (2012b) Is that what Bayesians believe? Reply to Griffiths, Chater, Norris, and Pouget (2012) Psychological Bulletin 138(3):423–26. Available at: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0027750.Google Scholar
Brainard, D. H., Longère, P., Delahunt, P. B., Freeman, W. T., Kraft, J. M. & Xiao, B. (2006) Bayesian model of human color constancy. Journal of Vision 6(11):1267–81.Google Scholar
Brayanov, J. B. & Smith, M. A. (2010) Bayesian and ‘anti-Bayesian’ biases in sensory integration for action and perception in the size-weight illusion. Journal of Neurophysiology 103(3):1518–31. Available at: http://jn.physiology.org/cgi/doi/10.1152/jn.00814.2009.Google Scholar
Brenner, N., Bialek, W. & de Ruyter van Steveninck, R. (2000) Adaptive rescaling maximizes information transmission. Neuron 26(3):695702. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=10896164&retmode=ref&cmd=prlinks.Google Scholar
Bronfman, Z. Z., Brezis, N., Moran, R., Tsetsos, K., Donner, T. & Usher, M. (2015) Decisions reduce sensitivity to subsequent information. Proceedings of the Royal Society B: Biological Sciences 282(1810):20150228. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26108628.Google Scholar
Brooke, J. B. & MacRae, A. W. (1977) Error patterns in the judgment and production of numerical proportions. Perception & Psychophysics 21(4):336–40. Available at: http://www.springerlink.com/index/10.3758/BF03199483.Google Scholar
Bülthoff, H. H. & Mallot, H. A. (1988) Integration of depth modules: Stereo and shading. Journal of the Optical Society of America A, Optics and Image Science 5(10):1749–58. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=3204438&retmode=ref&cmd=prlinks.Google Scholar
Burr, D., Banks, M. S. & Morrone, M. C. (2009) Auditory dominance over vision in the perception of interval duration. Experimental Brain Research 198(1):4957. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19597804&retmode=ref&cmd=prlinks.Google Scholar
Busemeyer, J. R. & Myung, I. J. (1992) An adaptive approach to human decision making: Learning theory, decision theory, and human performance. Journal of Experimental Psychology: General 121(2):177–94. Available at: http://psycnet.apa.org/journals/xge/121/2/177.html.Google Scholar
Busse, L., Ayaz, A., Dhruv, N. T., Katzner, S., Saleem, A. B., Schölvinck, M. L., Zaharia, A. D. & Carandini, M. (2011) The detection of visual contrast in the behaving mouse. Journal of Neuroscience 31(31):11351–61. Available at: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.6689-10.2011.Google Scholar
Carandini, M. & Heeger, D. J. (2012) Normalization as a canonical neural computation. Nature Reviews Neuroscience 13(1):5162. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3273486&tool=pmcentrez&rendertype=abstract.Google Scholar
Carrasco, M. (2011) Visual attention: The past 25 years. Vision Research 51(13):1484–525. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3390154&tool=pmcentrez&rendertype=abstract.Google Scholar
Carrasco, M., Ling, S. & Read, S. (2004) Attention alters appearance. Nature Neuroscience 7(3):308–13. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14966522.Google Scholar
Charles, L., Van Opstal, F., Marti, S. & Dehaene, S. (2013) Distinct brain mechanisms for conscious versus subliminal error detection. NeuroImage 73:8094. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23380166.Google Scholar
Cheadle, S., Wyart, V., Tsetsos, K., Myers, N., de Gardelle, V., Castañón, S. H. & Summerfield, C. (2014) Adaptive gain control during human perceptual choice. Neuron 81(6):1429–41. Available at: http://www.cell.com/article/S0896627314000518/fulltext.Google Scholar
Chen, C.-C. & Tyler, C. W. (2015) Shading beats binocular disparity in depth from luminance gradients: Evidence against a maximum likelihood principle for cue combination. PLoS ONE 10(8):e0132658. Available at: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132658.Google Scholar
Chiang, T.-C., Lu, R.-B., Hsieh, S., Chang, Y.-H. & Yang, Y.-K. (2014) Stimulation in the dorsolateral prefrontal cortex changes subjective evaluation of percepts. PLoS ONE 9(9):e106943. Available at: http://dx.plos.org/10.1371/journal.pone.0106943.Google Scholar
Clark, J. J. & Yullie, A. L. (1990) Data fusion for sensory information processing. Kluwer Academic.Google Scholar
Cooper, G. F. (1990) The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence 42(2–3):393405.Google Scholar
Cowan, N. (2005) Working memory capacity. Psychology Press.Google Scholar
Creelman, C. D. & Macmillan, N. A. (1979) Auditory phase and frequency discrimination: A comparison of nine procedures. Journal of Experimental Psychology: Human Perception and Performance 5(1):146–56. Available at: http://www.ncbi.nlm.nih.gov/pubmed/528924.Google Scholar
Dakin, S. C. (2001) Information limit on the spatial integration of local orientation signals. Journal of the Optical Society of America A, Optics and Image Science 18(5):1016–26. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11336204&retmode=ref&cmd=prlinks.Google Scholar
Davis-Stober, C. P., Park, S., Brown, N. & Regenwetter, M. (2016) Reported violations of rationality may be aggregation artifacts. Proceedings of the National Academy of Sciences of the United States of America 113(33):E4761–63. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27462103.Google Scholar
Dawes, R. M. (1980) Confidence in intellectual vs. confidence in perceptual judgments. In: Similarity and choice: Papers in honor of Clyde Coombs, ed. Lantermann, E. D. & Feger, H., pp. 327–45. Han Huber.Google Scholar
Dayan, P. (2014) Rationalizable irrationalities of choice. Topics in Cognitive Science 6(2):204–28. Available at: http://doi.wiley.com/10.1111/tops.12082.Google Scholar
de Gardelle, V. & Mamassian, P. (2015) Weighting mean and variability during confidence judgments. PLoS ONE 10(3):e0120870. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4368758&tool=pmcentrez&rendertype=abstract.Google Scholar
de Gardelle, V. & Summerfield, C. (2011) Robust averaging during perceptual judgment. Proceedings of the National Academy of Sciences of the United States of America 108(32):13341–46. doi:10.1073/pnas.1104517108.Google Scholar
Dekker, T. M., Ban, H., van der Velde, B., Sereno, M. I., Welchman, A. E. & Nardini, M. (2015) Late development of cue integration is linked to sensory fusion in cortex. Current Biology 25(21): 2856–61. Available at: https://doi.org/10.1016/j.cub.2015.09.043.Google Scholar
de Lange, F. P., Rahnev, D., Donner, T. H. & Lau, H. (2013) Prestimulus oscillatory activity over motor cortex reflects perceptual expectations. Journal of Neuroscience 33(4):1400–10. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23345216.Google Scholar
Del Cul, A., Dehaene, S., Reyes, P., Bravo, E. & Slachevsky, A. (2009) Causal role of prefrontal cortex in the threshold for access to consciousness. Brain 132(Pt. 9):2531–40. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19433438.Google Scholar
Denison, R. N., Adler, W. T., Carrasco, M. & Ma, W. J. (2018) Humans incorporate attention-dependent uncertainty into perceptual decisions and confidence. Proceedings of the National Academy of Sciences of the United States of America 115(43):11090–95. doi: 10.1073/pnas.1717720115.Google Scholar
Drugowitsch, J., DeAngelis, G. C., Angelaki, D. E. & Pouget, A. (2015) Tuning the speed-accuracy trade-off to maximize reward rate in multisensory decision-making. eLife 4:e06678. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26090907.Google Scholar
Drugowitsch, J., DeAngelis, G. C., Klier, E. M., Angelaki, D. E. & Pouget, A. (2014a) Optimal multisensory decision-making in a reaction-time task. eLife 3:e03005. Available at: http://elifesciences.org/content/early/2014/06/14/eLife.03005.abstract.Google Scholar
Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., Shadlen, M. N. & Pouget, A. (2012) The cost of accumulating evidence in perceptual decision making. Journal of Neuroscience 32(11):3612–28. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3329788&tool=pmcentrez&rendertype=abstract.Google Scholar
Drugowitsch, J., Moreno-Bote, R. & Pouget, A. (2014b) Relation between belief and performance in perceptual decision making. PLoS ONE 9(5):e96511. Available at: http://dx.plos.org/10.1371/journal.pone.0096511.Google Scholar
Drugowitsch, J. & Pouget, A. (2012) Probabilistic vs. non-probabilistic approaches to the neurobiology of perceptual decision-making. Current Opinion in Neurobiology 22(6):963–69. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3513621&tool=pmcentrez&rendertype=abstract.Google Scholar
Drugowitsch, J., Wyart, V., Devauchelle, A.-D. & Koechlin, E. (2016) Computational precision of mental inference as critical source of human choice suboptimality. Neuron 92(6):1398–411. Available at: http://dx.doi.org/10.1016/j.neuron.2016.11.005.Google Scholar
Eberhardt, F. & Danks, D. (2011) Confirmation in the cognitive sciences: The problematic case of Bayesian models. Minds and Machines 21(3):389410. Available at: http://link.springer.com/10.1007/s11023-011-9241-3.Google Scholar
Eckstein, M. P. (2011) Visual search: A retrospective. Journal of Vision 11(5):14. Available at: http://www.journalofvision.org/content/11/5/14.abstract.Google Scholar
Ernst, M. O. & Banks, M. S. (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–33. Available at: http://dx.doi.org/10.1038/415429a.Google Scholar
Evans, K. K., Birdwell, R. L. & Wolfe, J. M. (2013) If you don't find it often, you often don't find it: Why some cancers are missed in breast cancer screening. PLoS ONE 8(5):e64366. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3667799&tool=pmcentrez&rendertype=abstract.Google Scholar
Evans, K. K., Tambouret, R. H., Evered, A., Wilbur, D. C. & Wolfe, J. M. (2011) Prevalence of abnormalities influences cytologists’ error rates in screening for cervical cancer. Archives of Pathology & Laboratory Medicine 135(12):1557–60. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3966132&tool=pmcentrez&rendertype=abstract.Google Scholar
Fechner, G. T. (1860) Elemente der psychophysik. Breitkopf und Härtel.Google Scholar
Feng, S., Holmes, P., Rorie, A. & Newsome, W. T. (2009) Can monkeys choose optimally when faced with noisy stimuli and unequal rewards? PLoS Computational Biology 5(2):e1000284. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2631644&tool=pmcentrez&rendertype=abstract.Google Scholar
Fetsch, C. R., Pouget, A., Deangelis, G. C. & Angelaki, D. E. (2012) Neural correlates of reliability-based cue weighting during multisensory integration. Nature Neuroscience 15(1):146–54. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22101645&retmode=ref&cmd=prlinks.Google Scholar
Firestone, C. & Scholl, B. J. (2016) Cognition does not affect perception: Evaluating the evidence for “top-down” effects. Behavioral and Brain Sciences 39:e229. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26189677.Google Scholar
Fischer, J. & Whitney, D. (2014) Serial dependence in visual perception. Nature Neuroscience 17(5):738–43. Available at: http://dx.doi.org/10.1038/nn.3689.Google Scholar
Fiser, J., Berkes, P., Orbán, G. & Lengyel, M. (2010) Statistically optimal perception and learning: From behavior to neural representations. Trends in Cognitive Sciences 14(3):119–30. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2939867&tool=pmcentrez&rendertype=abstract.Google Scholar
Fitts, P. M. (1966) Cognitive aspects of information processing: III. Set for speed versus accuracy. Journal of Experimental Psychology 71(6):849–57.Google Scholar
Fleming, S. M. & Daw, N. D. (2017) Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation. Psychological Review 124(1):91114. http://doi.org/10.1037/rev0000045.Google Scholar
Fleming, S. M. & Lau, H. (2014) How to measure metacognition. Frontiers in Human Neuroscience 8:443. Available at: http://journal.frontiersin.org/Journal/10.3389/fnhum.2014.00443/abstract.Google Scholar
Fleming, S. M., Maloney, L. T. & Daw, N. D. (2013) The irrationality of categorical perception. Journal of Neuroscience 33(49):19060–70. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24305804&retmode=ref&cmd=prlinks.Google Scholar
Fleming, S. M., Maniscalco, B. & Ko, Y. (2015) Action-specific disruption of perceptual confidence. Psychological Science 26(1):8998. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25425059.Google Scholar
Fleming, S. M., Massoni, S., Gajdos, T. & Vergnaud, J.-C. (2016) Metacognition about the past and future: Quantifying common and distinct influences on prospective and retrospective judgments of self-performance. Neuroscience of Consciousness 2016(1):niw018. Available at: https://academic.oup.com/nc/article-lookup/doi/10.1093/nc/niw018.Google Scholar
Fleming, S. M., Ryu, J., Golfinos, J. G. & Blackmon, K. E. (2014) Domain-specific impairment in metacognitive accuracy following anterior prefrontal lesions. Brain 137(10):2811–22. Available at: http://brain.oxfordjournals.org/content/early/2014/08/06/brain.awu221.long.Google Scholar
Forstmann, B. U., Ratcliff, R. & Wagenmakers, E.-J. (2016) Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual Review of Psychology 67:641–66. Available at: http://www.annualreviews.org/eprint/2stAyEdsCkSk9MpsHMDV/full/10.1146/annurev-psych-122414-033645.Google Scholar
Fritsche, M., Mostert, P. & de Lange, F. P. (2017) Opposite effects of recent history on perception and decision. Current Biology 27(4):590–95. Available at: http://dx.doi.org/10.1016/j.cub.2017.01.006.Google Scholar
Frund, I., Wichmann, F. A. & Macke, J. H. (2014) Quantifying the effect of intertrial dependence on perceptual decisions. Journal of Vision 14(7):9. doi:10.1167/14.7.9.Google Scholar
Fuller, S., Park, Y. & Carrasco, M. (2009) Cue contrast modulates the effects of exogenous attention on appearance. Vision Research 49(14):1825–37. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19393260&retmode=ref&cmd=prlinks.Google Scholar
Ganmor, E., Landy, M. S. & Simoncelli, E. P. (2015) Near-optimal integration of orientation information across saccades. Journal of Vision 15(16):8. Available at: http://jov.arvojournals.org/article.aspx?doi=10.1167/15.16.8.Google Scholar
Garcia, S. E., Jones, P. R., Reeve, E. I., Michaelides, M., Rubin, G. S. & Nardini, M. (2017) Multisensory cue combination after sensory loss: Audio-visual localization in patients with progressive retinal disease. Journal of Experimental Psychology: Human Perception and Performance 43(4):729–40. Available at: http://doi.apa.org/getdoi.cfm?doi=10.1037/xhp0000344.Google Scholar
García-Pérez, M. A. & Alcalá-Quintana, R. (2010) The difference model with guessing explains interval bias in two-alternative forced-choice detection procedures. Journal of Sensory Studies 25(6):876–98. Available at: http://doi.wiley.com/10.1111/j.1745-459X.2010.00310.x.Google Scholar
García-Pérez, M. A. & Alcalá-Quintana, R. (2011) Interval bias in 2AFC detection tasks: Sorting out the artifacts. Attention, Perception, & Psychophysics 73(7):2332–52. Available at: http://www.springerlink.com/index/10.3758/s13414-011-0167-x.Google Scholar
Geisler, W. S. (2011) Contributions of ideal observer theory to vision research. Vision Research 51(7):771–81.Google Scholar
Geisler, W. S. & Najemnik, J. (2013) Optimal and non-optimal fixation selection in visual search. Perception ECVP Abstract 42:226. Available at: http://www.perceptionweb.com/abstract.cgi?id=v130805.Google Scholar
Gekas, N., Chalk, M., Seitz, A. R. & Series, P. (2013) Complexity and specificity of experimentally-induced expectations in motion perception. Journal of Vision 13(4):8. Available at: http://jov.arvojournals.org/article.aspx?articleid=2121832.Google Scholar
Gepshtein, S., Burge, J., Ernst, M. O. & Banks, M. S. (2005) The combination of vision and touch depends on spatial proximity. Journal of Vision 5(11):1013–23. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16441199&retmode=ref&cmd=prlinks.Google Scholar
Gershman, S. J., Horvitz, E. J. & Tenenbaum, J. B. (2015) Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science 349(6245):273–78. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26185246.Google Scholar
Gibson, J. J. & Radner, M. (1937) Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies. Journal of Experimental Psychology 20(5):453–67. Available at: http://doi.apa.org/getdoi.cfm?doi=10.1037/h0059826.Google Scholar
Gigerenzer, G. & Brighton, H. (2009) Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive Science 1(1):107–43.Google Scholar
Gigerenzer, G., Hoffrage, U. & Kleinbölting, H. (1991) Probabilistic mental models: A Brunswikian theory of confidence. Psychological Review 98(4):506–28. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1961771.Google Scholar
Gigerenzer, G. & Selten, R. (2002) Bounded rationality. MIT Press.Google Scholar
Girshick, A. R., Landy, M. S. & Simoncelli, E. P. (2011) Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics. Nature Neuroscience 14(7):926–32. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3125404&tool=pmcentrez&rendertype=abstract.Google Scholar
Glennerster, A., Tcheang, L., Gilson, S. J., Fitzgibbon, A. W. & Parker, A. J. (2006) Humans ignore motion and stereo cues in favor of a fictional stable world. Current Biology 16(4):428–32. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16488879&retmode=ref&cmd=prlinks.Google Scholar
Gobell, J. & Carrasco, M. (2005) Attention alters the appearance of spatial frequency and gap size. Psychological Science 16(8):644–51. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16102068&retmode=ref&cmd=prlinks.Google Scholar
Gold, J. M., Murray, R. F., Bennett, P. J. & Sekuler, A. B. (2000) Deriving behavioural receptive fields for visually completed contours. Current Biology 10(11):663–66. Available at: http://www.sciencedirect.com/science/article/pii/S0960982200005236.Google Scholar
Goodman, N. D., Frank, M. C. & Griffiths, T. L., Tenenbaum, J. B., Battaglia, P. W. & Hamrick, J. B. (2015) Relevant and robust: A response to Marcus and Davis (2013) Psychological Science 26(4):539–41. Available at: http://pss.sagepub.com/lookup/doi/10.1177/0956797614559544.Google Scholar
Gorea, A., Caetta, F. & Sagi, D. (2005) Criteria interactions across visual attributes. Vision Research 45(19):2523–32. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15950255.Google Scholar
Gorea, A. & Sagi, D. (2000) Failure to handle more than one internal representation in visual detection tasks. Proceedings of the National Academy of Sciences of the United States of America 97(22):12380–84. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=17350&tool=pmcentrez&rendertype=abstract.Google Scholar
Gorea, A. & Sagi, D. (2001) Disentangling signal from noise in visual contrast discrimination. Nature Neuroscience 4(11):1146–50. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11687818.Google Scholar
Gorea, A. & Sagi, D. (2002) Natural extinction: A criterion shift phenomenon. Visual Cognition 9(8):913–36.Google Scholar
Gori, M., Del Viva, M., Sandini, G. & Burr, D. C. (2008) Young children do not integrate visual and haptic form information. Current Biology 18(9):694–98. Available at: https://doi.org/10.1016/j.cub.2008.04.036.Google Scholar
Green, D. M. & Swets, J. A. (1966) Signal detection theory and psychophysics. John Wiley & Sons.Google Scholar
Griffin, D. & Tversky, A. (1992) The weighing of evidence and the determinants of confidence. Cognitive Psychology 24(3):411–35. Available at: http://www.sciencedirect.com/science/article/pii/001002859290013R.Google Scholar
Griffiths, T. L., Chater, N., Norris, D. & Pouget, A. (2012) How the Bayesians got their beliefs (and what those beliefs actually are): Comment on Bowers and Davis (2012) Psychological Bulletin 138(3):415–22. Available at: https://doi.org/10.1037/a0026884.Google Scholar
Griffiths, T. L., Lieder, F. & Goodman, N. D. (2015) Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic. Topics in Cognitive Science 7(2):217–29. Available at: http://doi.wiley.com/10.1111/tops.12142.Google Scholar
Grzywacz, N. M. & Balboa, R. M. (2002) A Bayesian framework for sensory adaptation. Neural Computation 14(3):543–59. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11860682&retmode=ref&cmd=prlinks.Google Scholar
Gu, Y., Angelaki, D. E. & DeAngelis, G. C. (2008) Neural correlates of multisensory cue integration in macaque MSTd. Nature Neuroscience 11(10):1201–10. Available at: http://www.nature.com/doifinder/10.1038/nn.2191.Google Scholar
Hammett, S. T., Champion, R. A., Thompson, P. G. & Morland, A. B. (2007) Perceptual distortions of speed at low luminance: Evidence inconsistent with a Bayesian account of speed encoding. Vision Research 47(4):564–68. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17011014.Google Scholar
Hanks, T. D., Mazurek, M. E., Kiani, R., Hopp, E. & Shadlen, M. N. (2011) Elapsed decision time affects the weighting of prior probability in a perceptual decision task. Journal of Neuroscience 31(17):6339–52. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3356114&tool=pmcentrez&rendertype=abstract.Google Scholar
Hanks, T. D. & Summerfield, C. (2017) Perceptual decision making in rodents, monkeys, and humans. Neuron 93(1):1531. Available at: http://dx.doi.org/10.1016/j.neuron.2016.12.003.Google Scholar
Harvey, N. (1997) Confidence in judgment. Trends in Cognitive Sciences 1(2):7882. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21223868.Google Scholar
Hassan, O. & Hammett, S. T. (2015) Perceptual biases are inconsistent with Bayesian encoding of speed in the human visual system. Journal of Vision 15(2):9. Available at: http://jov.arvojournals.org/article.aspx?articleid=2213273.Google Scholar
Hawkins, G. E., Forstmann, B. U., Wagenmakers, E.-J., Ratcliff, R. & Brown, S. D. (2015) Revisiting the evidence for collapsing boundaries and urgency signals in perceptual decision-making. Journal of Neuroscience 35(6):2476–84. Available at: http://www.jneurosci.org/content/35/6/2476.full.Google Scholar
Healy, A. F. & Kubovy, M. (1981) Probability matching and the formation of conservative decision rules in a numerical analog of signal detection. Journal of Experimental Psychology: Human Learning and Memory 7(5):344–54.Google Scholar
Heitz, R. P. (2014) The speed-accuracy tradeoff: History, physiology, methodology, and behavior. Frontiers in Neuroscience 8:150. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4052662&tool=pmcentrez&rendertype=abstract.Google Scholar
Helmholtz, H. L. F. (1856) Treatise on physiological optics. Thoemmes Continuum.Google Scholar
Henriques, J. B., Glowacki, J. M. & Davidson, R. J. (1994) Reward fails to alter response bias in depression. Journal of Abnormal Psychology 103(3):460–66. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7930045.Google Scholar
Hillis, J. M., Ernst, M. O., Banks, M. S. & Landy, M. S. (2002) Combining sensory information: Mandatory fusion within, but not between, senses. Science 298(5598):1627–30. Available at: http://www.sciencemag.org/cgi/doi/10.1126/science.1075396.Google Scholar
Hohwy, J., Roepstorff, A. & Friston, K. (2008) Predictive coding explains binocular rivalry: An epistemological review. Cognition 108(3):687701. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=18649876&retmode=ref&cmd=prlinks.Google Scholar
Holmes, P. & Cohen, J. D. (2014) Optimality and some of its discontents: Successes and shortcomings of existing models for binary decisions. Topics in Cognitive Science 6(2):258–78. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24648411.Google Scholar
Jack, C. E. & Thurlow, W. R. (1973) Effects of degree of visual association and angle of displacement on the “ventriloquism” effect. Perceptual and Motor Skills 37(3):967–79. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=4764534&retmode=ref&cmd=prlinks.Google Scholar
Jacobs, R. A. (1999) Optimal integration of texture and motion cues to depth. Vision Research 39(21):3621–29. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=10746132&retmode=ref&cmd=prlinks.Google Scholar
Jastrow, J. (1892) Studies from the University of Wisconsin: On the judgment of angles and positions of lines. American Journal of Psychology 5(2):214–48. Available at: http://www.jstor.org/stable/1410867?origin=crossref.Google Scholar
Jaynes, E. (1957/2003) Probability theory: The logic of science. (Original lectures published 1957). Available at: http://www.med.mcgill.ca/epidemiology/hanley/bios601/GaussianModel/JaynesProbabilityTheory.pdf. Cambridge University Press.Google Scholar
Jazayeri, M. & Movshon, J. A. (2007) A new perceptual illusion reveals mechanisms of sensory decoding. Nature 446(7138):912–15. Available at: http://www.nature.com/doifinder/10.1038/nature05739.Google Scholar
Jesteadt, W. (1974) Intensity and frequency discrimination in one- and two-interval paradigms. Journal of the Acoustical Society of America 55(6):1266–76. Available at: http://scitation.aip.org/content/asa/journal/jasa/55/6/10.1121/1.1914696.Google Scholar
Jolij, J. & Lamme, V. A. F. (2005) Repression of unconscious information by conscious processing: Evidence from affective blindsight induced by transcranial magnetic stimulation. Proceedings of the National Academy of Sciences of the United States of America 102(30):10747–51. Available at: http://www.pnas.org/content/102/30/10747.abstract.Google Scholar
Jones, M. & Love, B. C. (2011) Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behavioral and Brain Sciences 34(4):169–88. Available at: http://www.journals.cambridge.org/abstract_S0140525X10003134.Google Scholar
Juslin, P., Nilsson, H. & Winman, A. (2009) Probability theory, not the very guide of life. Psychological Review 116(4):856–74. Available at: http://psycnet.apa.org/record/2009-18254-007Google Scholar
Kahneman, D. & Tversky, A. (1979) Prospect theory: An analysis of decision under risk. Econometrica 47(2):263–92. Retrieved March 11, 2017. Available at: http://www.jstor.org/stable/1914185?origin=crossref.Google Scholar
Kalenscher, T., Tobler, P. N., Huijbers, W., Daselaar, S. M. & Pennartz, C. (2010) Neural signatures of intransitive preferences. Frontiers in Human Neuroscience 4:49. Available at: http://journal.frontiersin.org/article/10.3389/fnhum.2010.00049/abstract.Google Scholar
Kaneko, Y. & Sakai, K. (2015) Dissociation in decision bias mechanism between probabilistic information and previous decision. Frontiers in Human Neuroscience 9:261. Available at: http://journal.frontiersin.org/article/10.3389/fnhum.2015.00261/abstract.Google Scholar
Keren, G. (1988) On the ability of monitoring non-veridical perceptions and uncertain knowledge: Some calibration studies. Acta Psychologica 67(2):95119. Available at: http://www.sciencedirect.com/science/article/pii/0001691888900078.Google Scholar
Kiani, R., Corthell, L. & Shadlen, M. N. (2014) Choice certainty is informed by both evidence and decision time. Neuron 84(6):1329–42. Available at: http://www.sciencedirect.com/science/article/pii/S0896627314010964.Google Scholar
Kiani, R. & Shadlen, M. N. (2009) Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324(5928):759–64. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2738936&tool=pmcentrez&rendertype=abstract.Google Scholar
Kinchla, R. A. & Smyzer, F. (1967) A diffusion model of perceptual memory. Perception & Psychophysics 2(6):219–29. Available at: http://www.springerlink.com/index/10.3758/BF03212471.Google Scholar
Knill, D. C. & Pouget, A. (2004) The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences 27(12):712–19. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15541511.Google Scholar
Knill, D. C. & Saunders, J. A. (2003) Do humans optimally integrate stereo and texture information for judgments of surface slant? Vision Research 43(24):2539–58.Google Scholar
Koizumi, A., Maniscalco, B. & Lau, H. (2015) Does perceptual confidence facilitate cognitive control? Attention, Perception & Psychophysics 77(4):1295–306. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25737256.Google Scholar
Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B. & Shams, L. (2007) Causal inference in multisensory perception. PLoS ONE 2(9):e943. Available at: http://dx.plos.org/10.1371/journal.pone.0000943.Google Scholar
Körding, K. P. & Wolpert, D. M. (2004) Bayesian integration in sensorimotor learning. Nature 427(6971):244–47. Available at: http://dx.doi.org/10.1038/nature02169 .Google Scholar
Körding, K. P. & Wolpert, D. M. (2006) Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences 10(7):319–26. Available at: https://doi.org/10.1016/j.tics.2006.05.003.Google Scholar
Koriat, A. (2011) Subjective confidence in perceptual judgments: A test of the self-consistency model. Journal of Experimental Psychology: General 140(1):117–39. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2129932.Google Scholar
Landy, M. S., Banks, M. S. & Knill, D. C. (2011) Ideal-observer models of cue integration. In: Sensory cue integration, ed. Trommershäuser, J., Körding, K. P. & Landy, M. S., pp. 529. Oxford University Press.Google Scholar
Landy, M. S., Goutcher, R., Trommershäuser, J. & Mamassian, P. (2007) Visual estimation under risk. Journal of Vision 7(6):4. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2638507&tool=pmcentrez&rendertype=abstract.Google Scholar
Landy, M. S. & Kojima, H. (2001) Ideal cue combination for localizing texture-defined edges. Journal of the Optical Society of America A, Optics and Image Science 18(9):2307–20. Available at: http://www.cns.nyu.edu/~msl/papers/landykojima01.pdf.Google Scholar
Landy, M. S., Maloney, L., Johnston, E. B. & Young, M. (1995) Measurement and modeling of depth cue combination: In defense of weak fusion. Vision Research 35(3):389412.Google Scholar
Langer, M. S. & Bülthoff, H. H. (2001) A prior for global convexity in local shape-from-shading. Perception 30(4):403–10. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11383189&retmode=ref&cmd=prlinks.Google Scholar
Lau, H. & Passingham, R. E. (2006) Relative blindsight in normal observers and the neural correlate of visual consciousness. Proceedings of the National Academy of Sciences of the United States of America 103(49):18763–68. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1693736&tool=pmcentrez&rendertype=abstract.Google Scholar
Lau, H. & Rosenthal, D. (2011) Empirical support for higher-order theories of conscious awareness. Trends in Cognitive Sciences 15(8):365–73. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21737339.Google Scholar
Lennie, P. (2003) The cost of cortical computation. Current Biology 13(6):493–97. Available at: https://www.sciencedirect.com/science/article/pii/S0960982203001350.Google Scholar
Leshowitz, B. (1969) Comparison of ROC curves from one- and two-interval rating-scale procedures. Journal of the Acoustical Society of America 46(2B):399402. Available at: http://scitation.aip.org/content/asa/journal/jasa/46/2B/10.1121/1.1911703.Google Scholar
Liberman, A., Fischer, J. & Whitney, D. (2014) Serial dependence in the perception of faces. Current Biology 24(21):2569–74. doi:10.1016/j.cub.2014.09.025.Google Scholar
Ling, S. & Carrasco, M. (2006) When sustained attention impairs perception. Nature Neuroscience 9(10):1243–45. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16964254&retmode=ref&cmd=prlinks.Google Scholar
Liu, T., Abrams, J. & Carrasco, M. (2009) Voluntary attention enhances contrast appearance. Psychological Science 20(3):354–62. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19254239&retmode=ref&cmd=prlinks.Google Scholar
Lupyan, G. (2012) Linguistically modulated perception and cognition: The label-feedback hypothesis. Frontiers in Psychology 3:54. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22408629&retmode=ref&cmd=prlinks.Google Scholar
Lupyan, G. (2017) The paradox of the universal triangle: Concepts, language, and prototypes. Quarterly Journal of Experimental Psychology 70(3):389412. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=26731302&retmode=ref&cmd=prlinks.Google Scholar
Luu, L. & Stocker, A. A. (2016) Choice-induced biases in perception. bioRxiv 043224. Available at: http://biorxiv.org/content/early/2016/04/01/043224.abstract.Google Scholar
Ma, W. J. (2010) Signal detection theory, uncertainty, and Poisson-like population codes. Vision Research 50(22):2308–19. Available at: http://www.sciencedirect.com/science/article/pii/S004269891000430X.Google Scholar
Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. (2006) Bayesian inference with probabilistic population codes. Nature Neuroscience 9(11):1432–38. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17057707.Google Scholar
Macmillan, N. A. & Creelman, C. D. (2005) Detection theory: A user's guide. 2nd edition. Erlbaum.Google Scholar
Maddox, W. T. (1995) Base-rate effects in multidimensional perceptual categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition 21(2):288301. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7738501.Google Scholar
Maddox, W. T. (2002) Toward a unified theory of decision criterion learning in perceptual categorization. Journal of the Experimental Analysis of Behavior 78(3):567–95. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1284916/.Google Scholar
Maddox, W. T. & Bohil, C. J. (1998a) Base-rate and payoff effects in multidimensional perceptual categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition 24(6):1459–82.Google Scholar
Maddox, W. T. & Bohil, C. J. (1998b) Overestimation of base-rate differences in complex perceptual categories. Perception & Psychophysics 60(4):575–92.Google Scholar
Maddox, W. T. & Bohil, C. J. (2000) Costs and benefits in perceptual categorization. Memory & Cognition 28(4):597615.Google Scholar
Maddox, W. T. & Bohil, C. J. (2001) Feedback effects on cost-benefit learning in perceptual categorization. Memory & Cognition 29(4):598615.Google Scholar
Maddox, W. T. & Bohil, C. J. (2003) A theoretical framework for understanding the effects of simultaneous base-rate and payoff manipulations on decision criterion learning in perceptual categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition 29(2):307–20.Google Scholar
Maddox, W. T. & Bohil, C. J. (2004) Probability matching, accuracy maximization, and a test of the optimal classifier's independence assumption in perceptual categorization. Perception & Psychophysics 66(1):104–18.Google Scholar
Maddox, W. T. & Bohil, C. J. (2005) Optimal classifier feedback improves cost-benefit but not base-rate decision criterion learning in perceptual categorization. Memory & Cognition 33(2):303–19.Google Scholar
Maddox, W. T., Bohil, C. J. & Dodd, J. L. (2003) Linear transformations of the payoff matrix and decision criterion learning in perceptual categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition 29(6):1174–93.Google Scholar
Maddox, W. T. & Dodd, J. L. (2001) On the relation between base-rate and cost-benefit learning in simulated medical diagnosis. Journal of Experimental Psychology: Learning, Memory, and Cognition 27(6):1367–84. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11713873.Google Scholar
Maiworm, M. & Röder, B. (2011) Suboptimal auditory dominance in audiovisual integration of temporal cues. Tsinghua Science & Technology 16(2):121–32.Google Scholar
Maloney, L. T. & Landy, M. S. (1989) A statistical framework for robust fusion of depth information. In: Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE) 1119, Visual Communications and Image Processing IV, ed. Pearlman, W. A., pp. 1154–63. SPIE. Available at: http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1262206.Google Scholar
Maloney, L. T. & Mamassian, P. (2009) Bayesian decision theory as a model of human visual perception: Testing Bayesian transfer. Visual Neuroscience 26(1):147–55. Available at: https://doi.org/10.1017/S0952523808080905.Google Scholar
Maloney, L. T. & Zhang, H. (2010) Decision-theoretic models of visual perception and action. Vision Research 50(23):2362–74. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20932856.Google Scholar
Maniscalco, B. & Lau, H. (2010) Comparing signal detection models of perceptual decision confidence. Journal of Vision 10(7):213. Available at: http://jov.arvojournals.org/article.aspx?articleid=2138292.Google Scholar
Maniscalco, B. & Lau, H. (2012) A signal detection theoretic approach for estimating metacognitive sensitivity from confidence ratings. Consciousness and Cognition 21(1):422–30. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22071269.Google Scholar
Maniscalco, B. & Lau, H. (2015) Manipulation of working memory contents selectively impairs metacognitive sensitivity in a concurrent visual discrimination task. Neuroscience of Consciousness 2015(1):niv002. Available at: http://nc.oxfordjournals.org/content/2015/1/niv002.abstract.Google Scholar
Maniscalco, B. & Lau, H. (2016) The signal processing architecture underlying subjective reports of sensory awareness. Neuroscience of Consciousness 2016(1):niw002.Google Scholar
Maniscalco, B., Peters, M. A. K. & Lau, H. (2016) Heuristic use of perceptual evidence leads to dissociation between performance and metacognitive sensitivity. Attention, Perception & Psychophysics 78(3):923–37. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26791233.Google Scholar
Marcus, G. F. & Davis, E. (2013) How robust are probabilistic models of higher-level cognition? Psychological Science 24(12):2351–60. Available at: http://pss.sagepub.com/content/24/12/2351.abstract?ijkey=42fdf6a62d20a7c5e573d149a973e121f7ae2626&keytype2=tf_ipsecsha.Google Scholar
Marcus, G. F. & Davis, E. (2015) Still searching for principles: A response to Goodman et al. (2015) Psychological Science 26(4):542–44. Available at: http://pss.sagepub.com/lookup/doi/10.1177/0956797614568433.Google Scholar
Markman, A. B., Baldwin, G. C. & Maddox, W. T. (2005) The interaction of payoff structure and regulatory focus in classification. Psychological Science 16(11):852–55. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16262768.Google Scholar
Markowitz, J. & Swets, J. A. (1967) Factors affecting the slope of empirical ROC curves: Comparison of binary and rating responses. Perception & Psychophysics 2(3):91100. Available at: http://www.springerlink.com/index/10.3758/BF03210301.Google Scholar
Massoni, S. (2014) Emotion as a boost to metacognition: How worry enhances the quality of confidence. Consciousness and Cognition 29:189–98. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25286128.Google Scholar
Massoni, S., Gajdos, T. & Vergnaud, J.-C. (2014) Confidence measurement in the light of signal detection theory. Frontiers in Psychology 5:1455. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25566135.Google Scholar
McCurdy, L. Y., Maniscalco, B., Metcalfe, J., Liu, K. Y., de Lange, F. P. & Lau, H. (2013) Anatomical coupling between distinct metacognitive systems for memory and visual perception. Journal of Neuroscience 33(5):1897–906. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23365229.Google Scholar
Metcalfe, J. & Shimamura, A. P. (1994) Metacognition: Knowing about knowing. MIT Press.Google Scholar
Michael, E., de Gardelle, V., Nevado-Holgado, A. & Summerfield, C. (2015) Unreliable evidence: 2 Sources of uncertainty during perceptual choice. Cerebral Cortex 25(4):937–47. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24122138.Google Scholar
Michael, E., de Gardelle, V. & Summerfield, C. (2014) Priming by the variability of visual information. Proceedings of the National Academy of Sciences of the United States of America 111(21):7873–78. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24821803.Google Scholar
Morales, J., Solovey, G., Maniscalco, B., Rahnev, D., de Lange, F. P. & Lau, H. (2015) Low attention impairs optimal incorporation of prior knowledge in perceptual decisions. Attention, Perception & Psychophysics 77(6):2021–36. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25836765.Google Scholar
Mozer, M. C., Pashler, H. & Homaei, H. (2008) Optimal predictions in everyday cognition: The wisdom of individuals or crowds? Cognitive Science 32(7):1133–47.Google Scholar
Mueller, S. T. & Weidemann, C. T. (2008) Decision noise: An explanation for observed violations of signal detection theory. Psychonomic Bulletin & Review 15(3):465–94. Available at: http://www.springerlink.com/index/10.3758/PBR.15.3.465.Google Scholar
Nardini, M., Bedford, R. & Mareschal, D. (2010) Fusion of visual cues is not mandatory in children. Proceedings of the National Academy of Sciences of the United States of America 107(39):17041–46. Available at: https://doi.org/10.1073/pnas.1001699107.Google Scholar
Nardini, M., Jones, P., Bedford, R. & Braddick, O. (2008) Development of cue integration in human navigation. Current Biology 18(9):689–93. Available at: https://doi.org/10.1016/j.cub.2008.04.021.Google Scholar
Navajas, J., Hindocha, C., Foda, H., Keramati, M., Latham, P. E. & Bahrami, B. (2017) The idiosyncratic nature of confidence. Nature Human Behaviour 1(11):810–18. Available at: http://www.nature.com/articles/s41562-017-0215-1.Google Scholar
Navajas, J., Sigman, M. & Kamienkowski, J. E. (2014) Dynamics of visibility, confidence, and choice during eye movements. Journal of Experimental Psychology: Human Perception and Performance 40(3):1213–27. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24730743.Google Scholar
Norton, E. H., Fleming, S. M., Daw, N. D. & Landy, M. S. (2017) Suboptimal criterion learning in static and dynamic environments. PLoS Computational Biology 13(1):e1005304.Google Scholar
Odegaard, B., Wozny, D. R. & Shams, L. (2015) Biases in visual, auditory, and audiovisual perception of space. PLoS Computational Biology 11(12):e1004649. Available at: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004649.Google Scholar
Olzak, L. A. (1985) Interactions between spatially tuned mechanisms: Converging evidence. Journal of the Optical Society of America A, Optics and Image Science 2(9):1551–59.Google Scholar
Oruç, I., Maloney, L. T. & Landy, M. S. (2003) Weighted linear cue combination with possibly correlated error. Vision Research 43(23):2451–68. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=12972395&retmode=ref&cmd=prlinks.Google Scholar
Osgood, C. E. (1953) Method and theory in experimental psychology. Oxford University Press.Google Scholar
Oud, B., Krajbich, I., Miller, K., Cheong, J. H., Botvinick, M. & Fehr, E. (2016) Irrational time allocation in decision-making. Proceedings of the Royal Society B: Biological Sciences 283(1822):20151439. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26763695.Google Scholar
Peters, M. A. K., Ma, W. J. & Shams, L. (2016) The size-weight illusion is not anti-Bayesian after all: A unifying Bayesian account. PeerJ 4:e2124. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27350899.Google Scholar
Petrini, K., Remark, A., Smith, L. & Nardini, M. (2014) When vision is not an option: Children's integration of auditory and haptic information is suboptimal. Developmental Science 17(3):376–87. Available at: http://onlinelibrary.wiley.com/doi/10.1111/desc.12127/full.Google Scholar
Petzschner, F. H. & Glasauer, S. (2011) Iterative Bayesian estimation as an explanation for range and regression effects: A study on human path integration. Journal of Neuroscience 31(47):17220–29. Available at: http://www.jneurosci.org/content/31/47/17220.Google Scholar
Plaisier, M. A., van Dam, L. C. J., Glowania, C. & Ernst, M. O. (2014) Exploration mode affects visuohaptic integration of surface orientation. Journal of Vision 14(13):22. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25413627.Google Scholar
Pleskac, T. J. & Busemeyer, J. R. (2010) Two-stage dynamic signal detection: A theory of choice, decision time, and confidence. Psychological Review 117(3):864901. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20658856.Google Scholar
Prsa, M., Gale, S. & Blanke, O. (2012) Self-motion leads to mandatory cue fusion across sensory modalities. Journal of Neurophysiology 108(8):2282–91. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22832567&retmode=ref&cmd=prlinks.Google Scholar
Pynn, C. T. (1972) Intensity perception. III. Resolution in small-range identification. Journal of the Acoustical Society of America 51(2B):559–66. Available at: http://scitation.aip.org/content/asa/journal/jasa/51/2B/10.1121/1.1912878.Google Scholar
Rahnev, D., Bahdo, L., de Lange, F. P. & Lau, H. (2012a) Prestimulus hemodynamic activity in dorsal attention network is negatively associated with decision confidence in visual perception. Journal of Neurophysiology 108(5):1529–36. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22723670.Google Scholar
Rahnev, D., Koizumi, A., McCurdy, L. Y., D'Esposito, M. & Lau, H. (2015) Confidence leak in perceptual decision making. Psychological Science 26(11):1664–80. Available at: http://pss.sagepub.com/lookup/doi/10.1177/0956797615595037.Google Scholar
Rahnev, D., Kok, P., Munneke, M., Bahdo, L., de Lange, F. P. & Lau, H. (2013) Continuous theta burst transcranial magnetic stimulation reduces resting state connectivity between visual areas. Journal of Neurophysiology 110(8):1811–21. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23883858.Google Scholar
Rahnev, D., Lau, H. & de Lange, F. P. (2011a) Prior expectation modulates the interaction between sensory and prefrontal regions in the human brain. Journal of Neuroscience 31(29):10741–48.Google Scholar
Rahnev, D., Maniscalco, B., Graves, T., Huang, E., de Lange, F. P. & Lau, H. (2011b) Attention induces conservative subjective biases in visual perception. Nature Neuroscience 14(12):1513–15. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22019729.Google Scholar
Rahnev, D., Maniscalco, B., Luber, B., Lau, H. & Lisanby, S. H. (2012b) Direct injection of noise to the visual cortex decreases accuracy but increases decision confidence. Journal of Neurophysiology 107(6):1556–63. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22170965.Google Scholar
Rahnev, D., Nee, D. E., Riddle, J., Larson, A. S. & D'Esposito, M. (2016) Causal evidence for frontal cortex organization for perceptual decision making. Proceedings of the National Academy of Sciences of the United States of America 113(20):6059–64. Available at: http://www.pnas.org/content/early/2016/05/04/1522551113.full?tab=metrics.Google Scholar
Ramachandran, V. (1990) Interactions between motion, depth, color and form: The utilitarian theory of perception. In: Vision: Coding and efficiency, ed. Blakemore, C., pp. 346–60. Cambridge University Press.Google Scholar
Ratcliff, R. & Starns, J. J. (2009) Modeling confidence and response time in recognition memory. Psychological Review 116(1):5983. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2693899&tool=pmcentrez&rendertype=abstract.Google Scholar
Rauber, H. J. & Treue, S. (1998) Reference repulsion when judging the direction of visual motion. Perception 27(4):393402. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=9797918&retmode=ref&cmd=prlinks.Google Scholar
Raviv, O., Ahissar, M. & Loewenstein, Y. (2012) How recent history affects perception: The normative approach and its heuristic approximation. PLoS Computational Biology 8(10):e1002731. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23133343&retmode=ref&cmd=prlinks.Google Scholar
Reckless, G. E., Bolstad, I., Nakstad, P. H., Andreassen, O. A. & Jensen, J. (2013) Motivation alters response bias and neural activation patterns in a perceptual decision-making task. Neuroscience 238:135–47. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23428623.Google Scholar
Reckless, G. E., Ousdal, O. T., Server, A., Walter, H., Andreassen, O. A. & Jensen, J. (2014) The left inferior frontal gyrus is involved in adjusting response bias during a perceptual decision-making task. Brain and Behavior 4(3):398407. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4055190&tool=pmcentrez&rendertype=abstract.Google Scholar
Regenwetter, M., Cavagnaro, D. R., Popova, A., Guo, Y., Zwilling, C., Lim, S. H. & Stevens, J. R. (2017) Heterogeneity and parsimony in intertemporal choice. Decision 5(2):6394. Available at: http://doi.apa.org/getdoi.cfm?doi=10.1037/dec0000069.Google Scholar
Regenwetter, M., Dana, J. & Davis-Stober, C. P. (2010) Testing transitivity of preferences on two-alternative forced choice data. Frontiers in Psychology 1:148. Available at: http://journal.frontiersin.org/article/10.3389/fpsyg.2010.00148/abstract.Google Scholar
Regenwetter, M., Dana, J., Davis-Stober, C. P. & Guo, Y. (2011) Parsimonious testing of transitive or intransitive preferences: Reply to Birnbaum (2011) Psychological Review 118(4):684–88. Available at: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0025291.Google Scholar
Renart, A. & Machens, C. K. (2014) Variability in neural activity and behavior. Current Opinion in Neurobiology 25:211–20. Available at: http://dx.doi.org/10.1016/j.conb.2014.02.013.Google Scholar
Roach, N. W., Heron, J. & McGraw, P. V. (2006) Resolving multisensory conflict: A strategy for balancing the costs and benefits of audio-visual integration. Proceedings of the Royal Society B: Biological Sciences 273(1598):2159–68. doi:10.1098/rspb.2006.3578.Google Scholar
Rosas, P., Wagemans, J., Ernst, M. O. & Wichmann, F. A. (2005) Texture and haptic cues in slant discrimination: Reliability-based cue weighting without statistically optimal cue combination. Journal of the Optical Society of America A, Optics and Image Science 22(5):801809.Google Scholar
Rosas, P. & Wichmann, F. A. (2011) Cue combination: Beyond optimality. In: Sensory cue integration, ed. Trommershäuser, J., Körding, K. P. & Landy, M. S., pp. 144–52. Oxford University Press.Google Scholar
Rosas, P., Wichmann, F. A. & Wagemans, J. (2007) Texture and object motion in slant discrimination: Failure of reliability-based weighting of cues may be evidence for strong fusion. Journal of Vision 7(6):3. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=17685786&retmode=ref&cmd=prlinks.Google Scholar
Saarela, T. P. & Landy, M. S. (2015) Integration trumps selection in object recognition. Current Biology 25(7):920–27. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25802154.Google Scholar
Sabra, A. I. (1989) The optics of Ibn Al-Haytham, Books I–III: On direct vision. Warburg Institute.Google Scholar
Samaha, J., Barrett, J. J., Sheldon, A. D., LaRocque, J. J. & Postle, B. R. (2016) Dissociating perceptual confidence from discrimination accuracy reveals no influence of metacognitive awareness on working memory. Frontiers in Psychology 7:851. Available at: http://journal.frontiersin.org/Article/10.3389/fpsyg.2016.00851/abstract.Google Scholar
Sanders, J. I., Hangya, B. & Kepecs, A. (2016) Signatures of a statistical computation in the human sense of confidence. Neuron 90(3):499506. Available at: http://www.cell.com/article/S0896627316300162/fulltext.Google Scholar
Schulman, A. I. & Mitchell, R. R. (1966) Operating characteristics from yes-no and forced-choice procedures. Journal of the Acoustical Society of America 40(2):473–77. Available at: http://www.ncbi.nlm.nih.gov/pubmed/5911357.Google Scholar
Schurger, A., Kim, M.-S. & Cohen, J. D. (2015) Paradoxical interaction between ocular activity, perception, and decision confidence at the threshold of vision. PLoS ONE 10(5):e0125278. Available at: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125278.Google Scholar
Schwiedrzik, C. M., Ruff, C. C., Lazar, A., Leitner, F. C., Singer, W. & Melloni, L. (2014) Untangling perceptual memory: Hysteresis and adaptation map into separate cortical networks. Cerebral Cortex 24(5):1152–64. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23236204&retmode=ref&cmd=prlinks.Google Scholar
See, J. E., Warm, J. S., Dember, W. N. & Howe, S. R. (1997) Vigilance and signal detection theory: An empirical evaluation of five measures of response bias. Human Factors 39(1):1429. Available at: http://hfs.sagepub.com/cgi/doi/10.1518/001872097778940704.Google Scholar
Seriès, P. & Seitz, A. R. (2013) Learning what to expect (in visual perception). Frontiers in Human Neuroscience 7:668. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24187536&retmode=ref&cmd=prlinks.Google Scholar
Shen, S. & Ma, W. J. (2016) A detailed comparison of optimality and simplicity in perceptual decision making. Psychological Review 123(4):452–80. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27177259.Google Scholar
Sherman, M. T., Seth, A. K., Barrett, A. B. & Kanai, R. (2015) Prior expectations facilitate metacognition for perceptual decision. Consciousness and Cognition 35:5365. Available at: http://www.sciencedirect.com/science/article/pii/S1053810015000926.Google Scholar
Simen, P., Contreras, D., Buck, C., Hu, P., Holmes, P. & Cohen, J. D. (2009) Reward-rate optimization in two-alternative decision making: Empirical tests of theoretical predictions. Journal of Experimental Psychology: Human Perception and Performance 35:1865–97. Available at: http://dx.doi.org/10.1037/a0016926.Google Scholar
Simon, H. A. (1956) Rational choice and the structure of the environment. Psychological Review 63(2):129–38.Google Scholar
Simon, H. A. (1957) A behavioral model of rational choice. In: Models of man, social and rational: Mathematical essays on rational human behavior in a social setting, pp. 99118. Wiley.Google Scholar
Snyder, J. S., Schwiedrzik, C. M., Vitela, A. D. & Melloni, L. (2015) How previous experience shapes perception in different sensory modalities. Frontiers in Human Neuroscience 9:594. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=26582982&retmode=ref&cmd=prlinks.Google Scholar
Solovey, G., Graney, G. G. & Lau, H. (2015) A decisional account of subjective inflation of visual perception at the periphery. Attention, Perception & Psychophysics 77(1):258–71. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25248620.Google Scholar
Song, A., Koizumi, A. & Lau, H. (2015) A behavioral method to manipulate metacognitive awareness independent of stimulus awareness. In: Behavioral methods in consciousness research, ed. Overgaard, M., pp. 7785. Oxford University Press.Google Scholar
Song, C., Kanai, R., Fleming, S. M., Weil, R. S., Schwarzkopf, D. S. & Rees, G. (2011) Relating inter-individual differences in metacognitive performance on different perceptual tasks. Consciousness and Cognition 20(4):1787–92. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3203218&tool=pmcentrez&rendertype=abstract.Google Scholar
Spence, M. L., Dux, P. E. & Arnold, D. H. (2016) Computations underlying confidence in visual perception. Journal of Experimental Psychology: Human Perception and Performance 42(5):671–82. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26594876.Google Scholar
Starns, J. J. & Ratcliff, R. (2010) The effects of aging on the speed–accuracy compromise: Boundary optimality in the diffusion model. Psychology and Aging 25(2):377–90. Available at: http://dx.doi.org/10.1037/a0018022.Google Scholar
Starns, J. J. & Ratcliff, R. (2012) Age-related differences in diffusion model boundary optimality with both trial-limited and time-limited tasks. Psychonomic Bulletin & Review 19(1):139–45. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22144142.Google Scholar
Stocker, A. A. & Simoncelli, E. P. (2006a) Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience 9(4):578–85. Available at: http://dx.doi.org/10.1038/nn1669.Google Scholar
Stocker, A. A. & Simoncelli, E. P. (2006b) Sensory adaptation within a Bayesian framework for perception. In: Advances in neural information processing systems 18 (proceedings from the conference, Neural Information Processing Systems 2005), ed. Weiss, Y. & Schölkopf, B. & Platt, J. C.. Available at: https://papers.nips.cc/book/advances-in-neural-information-processing-systems-18-2005.Google Scholar
Stocker, A. A. & Simoncelli, E. P. (2008) A Bayesian model of conditioned perception. In: Advances in neural information processing systems 20 (proceedings from the conference, Neural Information Processing Systems 2007), ed. Platt, J. C., Koller, D., Singer, Y. & Roweis, S.. Available at: https://papers.nips.cc/paper/3369-a-bayesian-model-of-conditioned-perception.Google Scholar
Stone, L. S. & Thompson, P. (1992) Human speed perception is contrast dependent. Vision Research 32(8):1535–49. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1455726.Google Scholar
Störmer, V. S., Mcdonald, J. J. & Hillyard, S. A. (2009) Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli. Proceedings of the National Academy of Sciences of the United States of America 106(52):22456–61. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=20007778&retmode=ref&cmd=prlinks.Google Scholar
Summerfield, C. & Koechlin, E. (2010) Economic value biases uncertain perceptual choices in the parietal and prefrontal cortices. Frontiers in Human Neuroscience 4:208. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3024559&tool=pmcentrez&rendertype=abstract.Google Scholar
Summerfield, C. & Tsetsos, K. (2015) Do humans make good decisions? Trends in Cognitive Sciences 19(1):2734. Available at: https://doi.org/10.1007/s11103-011-9767-z.Google Scholar
Sun, J. & Perona, P. (1997) Shading and stereo in early perception of shape and reflectance. Perception 26(4):519–29. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=9404497&retmode=ref&cmd=prlinks.Google Scholar
Swets, J. A. & Green, D. M. (1961) Sequential observations by human observers of signals in noise. In: Information theory: Proceedings of the fourth London symposium, ed. Cherry, C., pp. 177–95. Butterworth.Google Scholar
Swets, J. A., Tanner, W. P. & Birdsall, T. G. (1961) Decision processes in perception. Psychological Review 68(5):301–40. Available at: http://www.ncbi.nlm.nih.gov/pubmed/13774292.Google Scholar
Tanner, T. A., Haller, R. W. & Atkinson, R. C. (1967) Signal recognition as influenced by presentation schedules. Perception & Psychophysics 2(8):349–58. Available at: http://www.springerlink.com/index/10.3758/BF03210070.Google Scholar
Tanner, W. P. (1956) Theory of recognition. Journal of the Acoustical Society of America 28:882–88.Google Scholar
Tanner, W. P. (1961) Physiological implications of psychophysical data. Annals of the New York Academy of Sciences 89:752–65. Available at: http://www.ncbi.nlm.nih.gov/pubmed/13775211.Google Scholar
Tauber, S., Navarro, D. J., Perfors, A. & Steyvers, M. (2017) Bayesian models of cognition revisited: Setting optimality aside and letting data drive psychological theory. Psychological Review 124(4):410–41.Google Scholar
Taylor, S. F., Welsh, R. C., Wagner, T. D., Phan, K. L., Fitzgerald, K. D. & Gehring, W. J. (2004) A functional neuroimaging study of motivation and executive function. NeuroImage 21(3):1045–54. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15006672.Google Scholar
Tenenbaum, J. B. & Griffiths, T. L. (2006) Optimal predictions in everyday cognition. Psychological Science 17(9):767–73.Google Scholar
Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. (2011) How to grow a mind: Statistics, structure, and abstraction. Science 331(6022):1279–85. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21393536.Google Scholar
Thompson, P. (1982) Perceived rate of movement depends on contrast. Vision Research 22(3):377–80. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7090191.Google Scholar
Thompson, P., Brooks, K. & Hammett, S. T. (2006) Speed can go up as well as down at low contrast: Implications for models of motion perception. Vision Research 46(6–7):782–86. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16171842&retmode=ref&cmd=prlinks.Google Scholar
Thura, D., Beauregard-Racine, J., Fradet, C.-W. & Cisek, P. (2012) Decision making by urgency gating: Theory and experimental support. Journal of Neurophysiology 108(11):2912–30. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22993260.Google Scholar
Treisman, M. & Faulkner, A. (1984) The setting and maintenance of criteria representing levels of confidence. Journal of Experimental Psychology: Human Perception and Performance 10(1):119–39. Available at: http://discovery.ucl.ac.uk/20033/.Google Scholar
Trommershäuser, J. (2009) Biases and optimality of sensory-motor and cognitive decisions. Progress in Brain Research 174:267–78. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19477345&retmode=ref&cmd=prlinks.Google Scholar
Trommershäuser, J., Körding, K. P. & Landy, M. S., eds. (2011) Sensory cue integration. Oxford University Press.Google Scholar
Tse, P. U. (2005) Voluntary attention modulates the brightness of overlapping transparent surfaces. Vision Research 45(9):1095–98. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=15707917&retmode=ref&cmd=prlinks.Google Scholar
Tsetsos, K., Moran, R., Moreland, J., Chater, N., Usher, M. & Summerfield, C. (2016a) Economic irrationality is optimal during noisy decision making. Proceedings of the National Academy of Sciences of the United States of America 113(11):3102–107. Available at: http://www.pnas.org/content/early/2016/02/24/1519157113.long.Google Scholar
Tsetsos, K., Pfeffer, T., Jentgens, P. & Donner, T. H. (2015) Action planning and the timescale of evidence accumulation. PLoS ONE 10(6):e0129473.Google Scholar
Tsotsos, J. K. (1993) The role of computational complexity in perceptual theory. Advances in Psychology 99:261–96.Google Scholar
Turatto, M., Vescovi, M. & Valsecchi, M. (2007) Attention makes moving objects be perceived to move faster. Vision Research 47(2):166–78. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=17116314&retmode=ref&cmd=prlinks.Google Scholar
Turnbull, W. H. (1961) The correspondence of Isaac Newton. Vol. 3, 1688–1694. Cambridge University Press.Google Scholar
Ulehla, Z. J. (1966) Optimality of perceptual decision criteria. Journal of Experimental Psychology 71(4):564–69. Available at: http://www.ncbi.nlm.nih.gov/pubmed/5909083.Google Scholar
van Beers, R. J., Sittig, A. C. & van der Gon Denier, J. J. (1996) How humans combine simultaneous proprioceptive and visual position information. Experimental Brain Research 111(2):253–61.Google Scholar
van den Berg, R., Yoo, A. H. & Ma, W. J. (2017) Fechner's law in metacognition: A quantitative model of visual working memory confidence. Psychological Review 124(2):197214.Google Scholar
vandormael, H., Castañón, S. H., Balaguer, J., Li, V. & Summerfield, C. (2017) Robust sampling of decision information during perceptual choice. Proceedings of the National Academy of Sciences of the United States of America 114(10):2771–76. Available at: http://www.pnas.org/lookup/doi/10.1073/pnas.1613950114.Google Scholar
van Rooij, I. (2008) The tractable cognition thesis. Cognitive Science 32(6):939–84. Available at: http://doi.wiley.com/10.1080/03640210801897856.Google Scholar
van Wert, M. J., Horowitz, T. S. & Wolfe, J. M. (2009) Attention, Perception & Psychophysics 71(3):541–53. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2701252&tool=pmcentrez&rendertype=abstract.Google Scholar
Varey, C. A., Mellers, B. A. & Birnbaum, M. H. (1990) Judgments of proportions. Journal of Experimental Psychology: Human Perception and Performance 16(3):613–25. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2144575.Google Scholar
Vaziri-Pashkam, M. & Cavanagh, P. (2008) Apparent speed increases at low luminance. Journal of Vision 8(16):9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19146275.Google Scholar
Vickers, D. (1979) Decision processes in visual perception. Academic Press.Google Scholar
Vickers, D. & Packer, J. (1982) Effects of alternating set for speed or accuracy on response time, accuracy and confidence in a unidimensional discrimination task. Acta Psychologica 50(2):179–97.Google Scholar
Viemeister, N. F. (1970) Intensity discrimination: Performance in three paradigms. Perception & Psychophysics 8(6):417–19. Available at: http://www.springerlink.com/index/10.3758/BF03207037.Google Scholar
Vincent, B. (2011) Covert visual search: Prior beliefs are optimally combined with sensory evidence. Journal of Vision 11(13):25.Google Scholar
Vintch, B. & Gardner, J. L. (2014) Cortical correlates of human motion perception biases. Journal of Neuroscience 34(7):2592–604. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24523549&retmode=ref&cmd=prlinks.Google Scholar
Vlassova, A., Donkin, C. & Pearson, J. (2014) Unconscious information changes decision accuracy but not confidence. Proceedings of the National Academy of Sciences of the United States of America 111(45):16214–18. Available at: http://www.pnas.org/content/early/2014/10/24/1403619111.short.Google Scholar
von Winterfeldt, D. & Edwards, W. (1982) Costs and payoffs in perceptual research. Psychological Bulletin 91(3):609–22.Google Scholar
Vul, E., Goodman, N., Griffiths, T. L. & Tenenbaum, J. B. (2014) One and done? Optimal decisions from very few samples. Cognitive Science 38(4):599637. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24467492.Google Scholar
Wainwright, M. J. (1999) Visual adaptation as optimal information transmission. Vision Research 39(23):3960–74. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=10748928&retmode=ref&cmd=prlinks.Google Scholar
Ward, L. M. & Lockhead, G. R. (1970) Sequential effects and memory in category judgments. Journal of Experimental Psychology 84(1):2734. Available at: https://scholars.duke.edu/display/pub651252.Google Scholar
Wark, B., Lundstrom, B. N. & Fairhall, A. (2007) Sensory adaptation. Current Opinion in Neurobiology 17(4):423–29. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=17714934&retmode=ref&cmd=prlinks.Google Scholar
Warren, D. H. & Cleaves, W. T. (1971) Visual-proprioceptive interaction under large amounts of conflict. Journal of Experimental Psychology 90(2):206–14. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=5134326&retmode=ref&cmd=prlinks.Google Scholar
Watson, C. S., Kellogg, S. C., Kawanishi, D. T. & Lucas, P. A. (1973) The uncertain response in detection-oriented psychophysics. Journal of Experimental Psychology 99(2):180–85.Google Scholar
Webster, M. A. (2015) Visual adaptation. Annual Review of Vision Science 1:547–67. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=26858985&retmode=ref&cmd=prlinks.Google Scholar
Webster, M. A., Kaping, D., Mizokami, Y. & Duhamel, P. (2004) Adaptation to natural facial categories. Nature 428(6982):557–61. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=15058304&retmode=ref&cmd=prlinks.Google Scholar
Webster, M. A. & MacLeod, D. I. A. (2011) Visual adaptation and face perception. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1571):1702–25. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=21536555&retmode=ref&cmd=prlinks.Google Scholar
Wei, K. & Körding, K. P. (2011) Causal inference in sensorimotor learning and control. In: Sensory cue integration, ed. Trommershäuser, J., Körding, K. & Landy, M. S., pp. 3045. Oxford University Press.Google Scholar
Wei, X.-X. & Stocker, A. A. (2013) Efficient coding provides a direct link between prior and likelihood in perceptual Bayesian inference. In: Advances in neural information processing systems 25 (proceedings from the conference, Neural Information Processing Systems 2012), ed. Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.. Available at: https://papers.nips.cc/paper/4489-efficient-coding-provides-a-direct-link-between-prior-and-likelihood-in-perceptual-bayesian-inference.Google Scholar
Wei, X.-X. & Stocker, A. A. (2015) A Bayesian observer model constrained by efficient coding can explain “anti-Bayesian” percepts. Nature Neuroscience 18:1509–17. Available at: http://dx.doi.org/10.1038/nn.4105.Google Scholar
Weil, L. G., Fleming, S. M., Dumontheil, I., Kilford, E. J., Weil, R. S., Rees, G., Dolan, R. J., Blakemore, S.-J. (2013) The development of metacognitive ability in adolescence. Consciousness and Cognition 22(1):264–71. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3719211&tool=pmcentrez&rendertype=abstract.Google Scholar
Weiskrantz, L. (1996) Blindsight revisited. Current Opinion in Neurobiology 6(2):215–20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8725963.Google Scholar
Weiss, Y., Simoncelli, E. P. & Adelson, E. H. (2002) Motion illusions as optimal percepts. Nature Neuroscience 5(6):598604. Available at: http://www.nature.com/neuro/journal/v5/n6/full/nn858.html.Google Scholar
Whiteley, L. & Sahani, M. (2008) Implicit knowledge of visual uncertainty guides decisions with asymmetric outcomes. Journal of Vision 8(3):2.115. Available at: http://www.journalofvision.org/content/8/3/2.Google Scholar
Whiteley, L. & Sahani, M. (2012) Attention in a Bayesian framework. Frontiers in Human Neuroscience 6:100. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22712010&retmode=ref&cmd=prlinks%5Cnpapers3://publication/doi/10.3389/fnhum.2012.00100.Google Scholar
Wilimzig, C., Tsuchiya, N., Fahle, M., Einhäuser, W. & Koch, C. (2008) Spatial attention increases performance but not subjective confidence in a discrimination task. Journal of Vision 8(5):110. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18842078.Google Scholar
Winman, A. & Juslin, P. (1993) Calibration of sensory and cognitive judgments: Two different accounts. Scandinavian Journal of Psychology 34(2):135–48. Available at: http://doi.wiley.com/10.1111/j.1467-9450.1993.tb01109.x.Google Scholar
Witt, J. K. (2011) Action's effect on perception. Current Directions in Psychological Science 20(3):201206. Available at: http://cdp.sagepub.com/content/20/3/201.short.Google Scholar
Witt, J. K., Proffitt, D. R. & Epstein, W. (2005) Tool use affects perceived distance, but only when you intend to use it. Journal of Experimental Psychology: Human Perception and Performance 31(5):880–88. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16262485&retmode=ref&cmd=prlinks.Google Scholar
Wohlgemuth, A. (1911) On the after-effect of seen movement. Cambridge University Press. Available at: https://books.google.com/books?id=Z6AhAQAAIAAJ.Google Scholar
Wolfe, J. M., Brunelli, D. N., Rubinstein, J. & Horowitz, T. S. (2013) Prevalence effects in newly trained airport checkpoint screeners: Trained observers miss rare targets, too. Journal of Vision 13(3):33. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3848386&tool=pmcentrez&rendertype=abstract.Google Scholar
Wolfe, J. M., Horowitz, T. S. & Kenner, N. M. (2005) Cognitive psychology: Rare items often missed in visual searches. Nature 435(7041):439–40. Available at: http://dx.doi.org/10.1038/435439a.Google Scholar
Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S. & Kibbi, N. (2007) Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General 136(4):623–38. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2662480&tool=pmcentrez&rendertype=abstract.Google Scholar
Wolfe, J. M. & Van Wert, M. J. (2010) Varying target prevalence reveals two dissociable decision criteria in visual search. Current Biology 20(2):121–24. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2818748&tool=pmcentrez&rendertype=abstract.Google Scholar
Wyart, V. & Koechlin, E. (2016) Choice variability and suboptimality in uncertain environments. Current Opinion in Behavioral Sciences 11:109–15. Available at: http://dx.doi.org/10.1016/j.cobeha.2016.07.003.Google Scholar
Wyart, V., Myers, N. E. & Summerfield, C. (2015) Neural mechanisms of human perceptual choice under focused and divided attention. Journal of Neuroscience 35(8):3485–98. Available at: http://www.jneurosci.org/content/35/8/3485.abstract?etoc.Google Scholar
Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D. & DiCarlo, J. J. (2014) Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences of the United States of America 111(23):8619–24. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24812127.Google Scholar
Yeshurun, Y. & Carrasco, M. (1998) Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396(6706):7275. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=9817201&retmode=ref&cmd=prlinks.Google Scholar
Yeshurun, Y., Carrasco, M. & Maloney, L. T. (2008) Bias and sensitivity in two-interval forced choice procedures: Tests of the difference model. Vision Research 48(17):1837–51. Available at: http://www.sciencedirect.com/science/article/pii/S0042698908002599.Google Scholar
Yeung, N. & Summerfield, C. (2012) Metacognition in human decision-making: Confidence and error monitoring. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences 367(1594):1310–21. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3318764&tool=pmcentrez&rendertype=abstract.Google Scholar
Yu, A. J. & Cohen, J. D. (2009) Sequential effects: Superstition or rational behavior? In: Advances in neural information processing systems 21 (proceedings from the conference, Neural Information Processing Systems 2008), ed. Koller, D., Schuurmans, D., Bengio, Y. & Bottou, L.. Available at: https://papers.nips.cc/book/advances-in-neural-information-processing-systems-21-2008.Google Scholar
Zacksenhouse, M., Bogacz, R. & Holmes, P. (2010) Robust versus optimal strategies for two-alternative forced choice tasks. Journal of Mathematical Psychology 54(2):230–46. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3505075&tool=pmcentrez&rendertype=abstract.Google Scholar
Zak, I., Katkov, M., Gorea, A. & Sagi, D. (2012) Decision criteria in dual discrimination tasks estimated using external-noise methods. Attention, Perception & Psychophysics 74(5):1042–55. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22351481.Google Scholar
Zamboni, E., Ledgeway, T., McGraw, P. V. & Schluppeck, D. (2016) Do perceptual biases emerge early or late in visual processing? Decision-biases in motion perception. Proceedings of the Royal Society B: Biological Sciences 283(1833):20160263. Available at: http://rspb.royalsocietypublishing.org/content/283/1833/20160263.Google Scholar
Zhang, H. & Maloney, L. T. (2012) Ubiquitous log odds: A common representation of probability and frequency distortion in perception, action, and cognition. Frontiers in Neuroscience 6:1. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3261445&tool=pmcentrez&rendertype=abstract.Google Scholar
Zhang, H., Morvan, C. & Maloney, L. T. (2010) Gambling in the visual periphery: A conjoint-measurement analysis of human ability to judge visual uncertainty. PLoS Computational Biology 6(12):1001023. Available at: http://dx.plos.org/10.1371/journal.pcbi.1001023.Google Scholar
Zylberberg, A., Barttfeld, P. & Sigman, M. (2012) The construction of confidence in a perceptual decision. Frontiers in Integrative Neuroscience 6:79. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3448113&tool=pmcentrez&rendertype=abstract.Google Scholar
Zylberberg, A., Roelfsema, P. R. & Sigman, M. (2014) Variance misperception explains illusions of confidence in simple perceptual decisions. Consciousness and Cognition 27:246–53. Available at: http://www.sciencedirect.com/science/article/pii/S1053810014000865.Google Scholar