Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T14:05:33.739Z Has data issue: false hasContentIssue false

What is an (abstract) neural representation of quantity?

Published online by Cambridge University Press:  27 August 2009

Manuela Piazza
Affiliation:
Center for Mind Brain Sciences, University of Trento, 38068 Rovereto (TN)Italy. Manuela.piazza@unitn.it
Veronique Izard
Affiliation:
Department of Psychology, Harvard University, Cambridge, MA 02138. Veronique.izard@polytechnique.org

Abstract

We argue that Cohen Kadosh & Walsh's (CK&W's) definitions of neural coding and of abstract representations are overly shallow, influenced by classical cognitive psychology views of modularity and seriality of information processing, and incompatible with the current knowledge on principles of neural coding. As they stand, the proposed dichotomies are not very useful heuristic tools to guide our research towards a better understanding of the neural computations underlying the processing of numerical quantity in the parietal cortex.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

deCharms, R. C. & Zador, A. (2000) Neural representation and the cortical code. Annual Review of Neuroscience 23:613–47.CrossRefGoogle ScholarPubMed
Dehaene, S. (2007) Symbols and quantities in parietal cortex: Elements of a mathematical theory of number representation and manipulation. In: Attention & performance XXII. Sensori-motor foundations of higher cognition, ed. Haggard, P. & Rossetti, Y., pp. 527–74. Harvard University Press.Google Scholar
Felleman, D. J. & Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1:147.CrossRefGoogle ScholarPubMed
Fodor, J. A. (1983) The modularity of mind. MIT Press.CrossRefGoogle Scholar
Kamitani, Y. & Tong, F. (2005) Decoding the visual and subjective contents of the human brain. Nature Neuroscience 8(5):679–85.CrossRefGoogle ScholarPubMed
McClelland, J. L. (1979) On the time relations of mental processes: An examination of systems of processes in cascade. Psychological Review 86:287330.CrossRefGoogle Scholar
Nieder, A., Diester, I. & Tudusciuc, O. (2006) Temporal and spatial enumeration processes in the primate parietal cortex. Science 313(5792):1431–35.CrossRefGoogle ScholarPubMed
Piazza, M., Pinel, P., Le Bihan, D. & Dehaene, S. (2007) A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron 53(2):293305.CrossRefGoogle ScholarPubMed
Pinel, P., Piazza, M., Le Bihan, D. & Dehaene, S. (2004) Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron 41(6):983–93.CrossRefGoogle ScholarPubMed
Rumelhart, D. E. & McClelland, J. L. (1986) Parallel distributed processing: Explorations in the microstructure of cognition. MIT Press/Bradford Books.CrossRefGoogle Scholar
Shuman, M. & Kanwisher, N. (2004) Numerical magnitude in the human parietal lobe: Tests of representational generality and domain specificity. Neuron 44(3):557–69.CrossRefGoogle ScholarPubMed
Tudusciuc, O. & Nieder, A. (2007) Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. Proceedings of the National Academy of Sciences USA 104(36):14513–18.CrossRefGoogle ScholarPubMed
Verguts, T. & Fias, W. (2004) Representation of number in animals and humans: A neural model. Journal of Cognitive Neuroscience 16(9):1493–504.CrossRefGoogle ScholarPubMed