Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T22:40:12.616Z Has data issue: false hasContentIssue false

Default options: a powerful behavioral tool to increase COVID-19 contact tracing app acceptance in Latin America?

Published online by Cambridge University Press:  01 December 2021

Cynthia Boruchowicz*
Affiliation:
School of Public Policy, University of Maryland, College Park, MD, USA
Florencia Lopez Boo
Affiliation:
Inter-American Development Bank, Washington, DC, USA
Benjamin Roseth
Affiliation:
Inter-American Development Bank, Washington, DC, USA
Luis Tejerina
Affiliation:
Inter-American Development Bank, Washington, DC, USA
*
*Corresponding to: E-mail: cynthiab@umd.edu

Abstract

Given the rates of transmission of COVID-19, relying only on manual contact tracing might be infeasible to control the epidemic without sustained costly lockdowns or rapid vaccination efforts. In the first study of its kind in Latin America, we find through a phone survey of a nationally representative sample of ten countries that an opt-out regime (automatic installation) increases self-reported intention to accept a contact tracing app with exposure notification by 22 percentage points compared to an opt-in regime (voluntary installation). This effect is triple the size and of opposite sign of the effect found in Europe and the United States, potentially due to lower concerns regarding privacy and lower levels of interpersonal trust. We see that an opt-out regime is more effective in increasing willingness to accept for those who do not trust the government or do not use their smartphones for financial transactions. The local severity of the pandemic does not affect our results, but feeling personally at risk increases intent to accept such apps in general. These results can shed light on the use of default options not only for contact tracing apps but in public health overall in the context of a pandemic in Latin America.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeler, J., Bäcker, M., Buermeyer, U. and Zillessen, H. (2020), ‘COVID-19 contact tracing and data protection can go together’, JMIR mHealth and uHealth, 8(4): e19359.CrossRefGoogle ScholarPubMed
Abueg, M., Hinch, R., Wu, N., Liu, L., Probert, W. J., Wu, A., Eastham, P., Shafi, Y., Rosencrantz, M., Dikovsky, M. and Cheng, Z. (2020), Modeling the combined effect of digital exposure notification and non-pharmaceutical interventions on the COVID-19 epidemic in Washington state. medRxiv.CrossRefGoogle Scholar
Akinbi, A., Forshaw, M. and Blinkhorn, V. (2020), Contact tracing apps for COVID-19 pandemic: Challenges and potential. Retrieved from: https://osf.io/6xbcs.CrossRefGoogle Scholar
Altmann, S., Milsom, L., Zillessen, H., Blasone, R., Gerdon, F., Bach, R., Kreuter, F., Nosenzo, D., Toussaert, S. and Abeler, J. (2020), ‘Acceptability of app-based contact tracing for COVID-19: Cross-country survey study’, JMIR mHealth and uHealth, 8(8): e19857.CrossRefGoogle ScholarPubMed
Anglemyer, A., Moore, T. H., Parker, L., Chambers, T., Grady, A., Chiu, K., Parry, M., Wilczynska, M., Flemyng, E. and Bero, L. (2020), ‘Digital contact tracing technologies in epidemics: A rapid review’, Cochrane Database of Systematic Reviews, 8(2020): 142. Article CD013699.Google ScholarPubMed
Ayres, I., Romano, A. and Sotis, C. (2020), How to make COVID-19 contact tracing apps work: Insights from behavioral economics. Available at SSRN 3689805.CrossRefGoogle Scholar
Bay, J., Kek, J., Tan, A., Hau, C. S., Yongquan, L., Tan, J. and Quy, T. A. (2020), BlueTrace: A privacy-preserving protocol for community-driven contact tracing across borders. Government Technology Agency-Singapore, Tech. Rep.Google Scholar
Bernheim, B. D., Fradkin, A. and Popov, I. (2015), ‘The welfare economics of default options in 401 (k) plans’, American Economic Review, 105(9): 27982837.CrossRefGoogle Scholar
Bradshaw, E. L., Ryan, R., Noetel, M., Saeri, A. K., Slattery, P., Grundy, E. and Calvo, R. A. (2020), Information safety assurances affect intentions to use COVID-19 contact tracing applications, regardless of autonomy-supportive or controlling message framing. Retrieved from: https://osf.io/5wap8.CrossRefGoogle Scholar
Carter, M. C., Burley, V. J., Nykjaer, C. and Cade, J. E. (2013), ‘Adherence to a smartphone application for weight loss compared to website and paper diary: Pilot randomized controlled trial’, Journal of Medical Internet Research, 15(4): e32.CrossRefGoogle ScholarPubMed
Chandon, P., Morwitz, V. G. and Reinartz, W. J. (2005), ‘Do intentions really predict behavior? Self-generated validity effects in survey research’, Journal of Marketing, 69(2): 114.CrossRefGoogle Scholar
Chapman, G. B., Li, M., Colby, H. and Yoon, H. (2010), ‘Opting in vs opting out of influenza vaccination’, Journal of the American Medical Association, 304(1): 4344.CrossRefGoogle ScholarPubMed
Choi, J. J., Laibson, D. and Madrian, B. C. (2004), ‘Plan design and 401 (k) savings outcomes’, National Tax Journal, 57(2): 275298.CrossRefGoogle Scholar
Dahmm, H. (2020), Data sharing in a post-pandemic world: how to safely wind down surveillance measures. SDG Knowledge HUB. Retrieved from: https://sdg.iisd.org/commentary/guest-articles/data-sharing-in-a-post-pandemic-world-how-to-safely-wind-down-surveillance-measures/.Google Scholar
DP-3T Project (2020), Privacy and security risk evaluation of digital proximity tracing systems. Retrieved from: https://github.com/DP-3T/documents.Google Scholar
Everett, J. A., Colombatto, C., Chituc, V., Brady, W. J. and Crockett, M. (2020), The effectiveness of moral messages on public health behavioral intentions during the COVID-19 pandemic. PsyArXiv Preprints. Retrieved from: https://doi.org/10.31234/osf.io/9yqs8.CrossRefGoogle Scholar
Ferretti, L., Wymant, C., Kendall, M., Zhao, L., Nurtay, A., Abeler-Dörner, L., Parker, M., Bonsall, D. and Fraser, C. (2020), ‘Quantifying COVID-19 transmission suggests epidemic control with digital contact tracing’, Science, 368(6491): 17.CrossRefGoogle ScholarPubMed
Feuer, W. (2020), May 22. South America is a ‘new epicenter’ of the coronavirus pandemic, WHO says. CNBC. Retrieved from: https://www.cnbc.com/2020/05/22/south-america-is-a-new-epicenter-of-the-coronavirus-pandemic-who-says.html.Google Scholar
Freer, A. (2018), Mobile app uninstall rate after 30 days is 28% according to AppsFlyer. Business of Apps. Retrieved from: https://www.businessofapps.com/news/mobile-app-uninstall-rate-after-30-days-is-28-according-to-appsflyer/.Google Scholar
Frimpong, J. A. and Helleringer, S. (2020), Financial incentives for downloading COVID-19 digital contact tracing apps. Retrieved from: https://osf.io/preprints/socarxiv/9vp7x/.CrossRefGoogle Scholar
Glöckner, A., Dorrough, A. R., Wingen, T. and Dohle, S. (2020), The perception of infection risks during the early and later outbreak of COVID-19 in Germany: Consequences and recommendations. PsyArXiv Preprints. Retrieved from: https://psyarxiv.com/wdbgc/.CrossRefGoogle Scholar
Gonzalez, V. M. and Dulin, P. L. (2015), ‘Comparison of a smartphone app for alcohol use disorders with an Internet-based intervention plus bibliotherapy: A pilot study’, Journal of Consulting and Clinical Psychology, 83(2): 335.CrossRefGoogle ScholarPubMed
Haerpfer, C., Inglehart, R., Moreno, A., Welzel, C., Kizilova, K., Diez-Medrano, J., Lagos, M., Norris, P., Ponarin, E., Puranen, B., et al. (eds) (2020), World Values Survey: Round Seven – Country-Pooled Datafile. Madrid, Spain & Vienna, Austria: JD Systems Institute & WVSA Secretariat. doi:10.14281/18241.13.Google Scholar
Hainmueller, J., Hangartner, D. and Yamamoto, T. (2015), ‘Validating vignette and conjoint survey experiments against real-world behavior’, Proceedings of the National Academy of Sciences, 112(8): 23952400.CrossRefGoogle ScholarPubMed
Halpern, S. D. (2018), ‘Using default options and other nudges to improve critical care’, Critical Care Medicine, 46(3): 460.CrossRefGoogle ScholarPubMed
Halpern, S. D., Loewenstein, G., Volpp, K. G., Cooney, E., Vranas, K., Quill, C. M., McKenzie, M. S., Harhay, M. O., Gabler, N. B., Silva, T. and Arnold, R. (2013), ‘Default options in advance directives influence how patients set goals for end-of-life care’, Health Affairs, 32(2): 408417.CrossRefGoogle ScholarPubMed
Hammonds, T., Rickert, K., Goldstein, C., Gathright, E., Gilmore, S., Derflinger, B., Bennett, B., Sterns, A., Drew, B. L. and Hughes, J. W. (2015), ‘Adherence to antidepressant medications: A randomized controlled trial of medication reminding in college students’, Journal of American College Health, 63(3): 204208.CrossRefGoogle ScholarPubMed
Johnson, E. J. and Goldstein, D. (2003), ‘Do defaults save lives?Science, 302(5649): 13381339.CrossRefGoogle ScholarPubMed
Johnson, E. J., Hershey, J., Meszaros, J. and Kunreuther, H. (1993), ‘Framing, probability distortions, and insurance decisions’, Journal of Risk and Uncertainty, 7(1): 3551.CrossRefGoogle Scholar
Johnson, E. J., Bellman, S. and Lohse, G. L. (2003), ‘Cognitive lock-in and the power law of practice’, Journal of Marketing, 67(2): 6275.CrossRefGoogle Scholar
Junco, R. (2013), ‘Comparing actual and self-reported measures of Facebook use’, Computers in Human Behavior, 29(3): 626631.CrossRefGoogle Scholar
Just, D. and Price, J. (2013), ‘Default options, incentives and food choices: Evidence from elementary-school children’, Public Health Nutrition, 16(12): 22812288.CrossRefGoogle ScholarPubMed
Kaiser, M., Bernauer, M., Sunstein, C. R. and Reisch, L. A. (2020), ‘The power of green defaults: The impact of regional variation of opt-out tariffs on green energy demand in Germany’, Ecological Economics, 174(106685): 112.CrossRefGoogle Scholar
Lunn, P. D., Timmons, S., Julienne, H., Belton, C. A., Barjaková, M., Lavin, C. and McGowan, F. P. (2021), ‘Using decision aids to support self-isolation during the COVID-19 pandemic’, Psychology & Health, 36(2): 195213.CrossRefGoogle ScholarPubMed
Malhotra, S., Cheriff, A. D., Gossey, J. T., Cole, C. L., Kaushal, R. and Ancker, J. S. (2016), ‘Effects of an e-Prescribing interface redesign on rates of generic drug prescribing: Exploiting default options’, Journal of the American Medical Informatics Association, 23(5): 891898.CrossRefGoogle ScholarPubMed
Miller, K. (2020), Is an Opt-Out Contact-Tracing App the Best Way to End the Pandemic? Human Centered Artificial Intelligence (HAI), Stanford University. Retrieved from: https://hai.stanford.edu/news/opt-out-contact-tracing-app-best-way-end-pandemic.Google Scholar
Moseley, A. and Stoker, G. (2015), ‘Putting public policy defaults to the test: The case of organ donor registration’, International Public Management Journal, 18(2): 246264.CrossRefGoogle Scholar
Muente, A. and Serale, F. (2020), Uso de datos personales durante la pandemia. Washington, DC: Mimeo.Google Scholar
Nelson, J., Goyeneche, L., Bermudez, N., Boruchowicz, C., Lopez Boo, F., Monroy, J. M., Roseth, B. and Tejerina, L. (2021), Pandemics, privacy, and technology adoption: Perceptions of the use of digital tools during COVID19 from 10 Latin American Countries. Mimeo.CrossRefGoogle Scholar
Park, C. W., Jun, S. Y. and MacInnis, D. J. (2000), ‘Choosing what I want versus rejecting what I do not want: An application of decision framing to product option choice decisions’, Journal of Marketing Research, 37(2): 187202.CrossRefGoogle Scholar
Prince, J. and Wallsten, S. (2020), How Much is Privacy Worth Around the World and Across Platforms?. Available at SSRN. Retrieved from: https://techpolicyinstitute.org/wp-content/uploads/2020/01/Prince_Wallsten_How-Much-is-Privacy-Worth-Around-the-World-and-Across-Platforms.pdf.CrossRefGoogle Scholar
Reuters (2021), Reuters COVID-19 Tracker, Latin America and the Caribbean. Available at: https://graphics.reuters.com/world-coronavirus-tracker-and-maps/regions/latin-america-and-the-caribbean/.Google Scholar
Roseth, B. and Porrúa, M. (2021), Trust and digital transformation. Mimeo.Google Scholar
Roseth, B., Reyes, A., Farias, P., Porrúa, M., Villalba, H., Acevedo, S. and Fillotrani, P. (2018), Wait No More: Citizens, Red Tape, and Digital Government. Washington, DC: Inter-American Development Bank.Google Scholar
Servick, K. (2020), ‘Can phone apps slow the spread of the coronavirus?’, Science, 368(6497): 12961297.CrossRefGoogle ScholarPubMed
Sticca, F., Goetz, T., Bieg, M., Hall, N. C., Eberle, F. and Haag, L. (2017), ‘Examining the accuracy of students’ self-reported academic grades from a correlational and a discrepancy perspective: Evidence from a longitudinal study’, PLoS One, 12(11): e0187367.CrossRefGoogle Scholar
Sunstein, C. R. and Reisch, L. A. (2014), ‘Automatically green: Behavioral economics and environmental protection’, Harvard Environmental Law Review, 38(1): 127158.Google Scholar
Susntein, C. R. (2020), Behavioral Science and Public Policy. Cambridge: Cambridge Elements Public Economics, Cambridge University Press.Google Scholar
Trang, S., Trenz, M., Weiger, W. H., Tarafdar, M. and Cheung, C. M. (2020), ‘One app to trace them all? Examining app specifications for mass acceptance of contact-tracing apps’, European Journal of Information Systems, 29(4): 415428.CrossRefGoogle Scholar
Troncoso, C., Payer, M., Hubaux, J. P., Salathé, M., Larus, J., Bugnion, E., Lueks, W., Stadler, T., Pyrgelis, A., Antonioli, D. and Barman, L. (2020), Decentralized privacy-preserving proximity tracing. https://arxiv.org/abs/2005.12273.Google Scholar
Van Dalen, H. P. and Henkens, K. (2014), ‘Comparing the effects of defaults in organ donation systems’, Social Science & Medicine, 106(4): 137142.CrossRefGoogle ScholarPubMed
Villani, D., Grassi, A., Cognetta, C., Toniolo, D., Cipresso, P. and Riva, G. (2013), ‘Self-help stress management training through mobile phones: An experience with oncology nurses’, Psychological Services, 10(3): 315.CrossRefGoogle ScholarPubMed
Wang, C. J. (2021), ‘Contact-tracing app curbs the spread of COVID’, Nature, 594(7863): 336337.CrossRefGoogle ScholarPubMed
Waterfield, G., Kaplan, S. and Zilberman, D. (2020), ‘Willingness to pay versus willingness to vote: Consumer and voter avoidance of genetically modified foods’, American Journal of Agricultural Economics, 102(2): 505524.CrossRefGoogle Scholar
Wise, T., Zbozinek, T. D., Michelini, G., Hagan, C. C. and Mobbs, D. (2020), ‘Changes in risk perception and self-reported protective behaviour during the first week of the COVID-19 pandemic in the United States’, Royal Society Open Science, 7(9): 200742.CrossRefGoogle ScholarPubMed
Wymant, C., Ferretti, L., Tsallis, D., Charalambides, M., Abeler-Dörner, L., Bonsall, D. and Fraser, C. (2021), ‘The epidemiological impact of the NHS COVID-19 App’, Nature, 594(7863): 408412.CrossRefGoogle ScholarPubMed
Supplementary material: File

Boruchowicz et al. supplementary material

Boruchowicz et al. supplementary material 1

Download Boruchowicz et al. supplementary material(File)
File 15.4 MB
Supplementary material: PDF

Boruchowicz et al. supplementary material

Boruchowicz et al. supplementary material 2

Download Boruchowicz et al. supplementary material(PDF)
PDF 1.4 MB