Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T09:25:37.458Z Has data issue: false hasContentIssue false

Language use affects proficiency in Italian–Spanish bilinguals irrespective of age of second language acquisition*

Published online by Cambridge University Press:  03 June 2014

FABRIZIO DE CARLI*
Affiliation:
Institute of Molecular Bioimaging and Physiology, National Research Council, Genoa
BARBARA DESSI
Affiliation:
Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa
MANUELA MARIANI
Affiliation:
Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa & Department of Modern Languages and Cultures, University of Genoa
NICOLA GIRTLER
Affiliation:
Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa & Clinical Psychology and Psychotherapy Unit, IRCCS AUO – San Martino IST, Genoa
ALBERTO GRECO
Affiliation:
Laboratory of Psychology and Cognitive Sciences, Department of Educational Sciences, University of Genoa
GUIDO RODRIGUEZ
Affiliation:
Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa
LAURA SALMON
Affiliation:
Department of Modern Languages and Cultures, University of Genoa
MARA MORELLI
Affiliation:
Department of Modern Languages and Cultures, University of Genoa
*
Address for correspondence: Fabrizio De Carli, Institute of MolecularBioimaging and Physiology, C.N.R., Via de Toni, 5, I 16132, Genoa, Italyf.decarli@ibfm.cnr.it

Abstract

The role of age of acquisition (AoA) in reaching native-like proficiency in second language is controversial. The existence of a critical period and the effect of AoA have been questioned by studies testing lexical and/or morphosyntactic skills, and by functional brain exploration. The aim of this study was to verify the effect of AoA and language practice on proficiency in a bilingual pragmatic task and its relationship with cognitive skills. The study involved a group of Italian–Spanish bilinguals, classified according to their AoA and language use. All participants performed a pragmatic bilingual test and a battery of cognitive tests. A multivariate analysis showed significant effects of language use and cognitive skills and a non-significant effect of AoA. These results indicate that continued language practice is a major factor influencing high bilingual proficiency, irrespective of AoA, suggesting that proficiency may be weakened when bilingual experience becomes occasional or ceases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The study reported in this paper was funded by a grant from Genoa University (projects selection 2007). The authors would like to thank the reviewers for their comments and suggestions which helped to improve the manuscript. They also thank Frances I. Evans Mariani and Jennifer Accardo for their valuable assistance with manuscript editing.

References

Abrahamsson, N., & Hyltenstam, K. (2009). Age of onset and nativelikeness in a second language: Listener perception versus linguistic scrutiny. Language Learning, 59, 249306.CrossRefGoogle Scholar
Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica, 128, 466478.CrossRefGoogle ScholarPubMed
Abutalebi, J., Tettamanti, M., & Perani, D. (2009). The bilingual brain: Linguistic and non-linguistic skills. Brain & Language, 109, 5154.CrossRefGoogle ScholarPubMed
Albert, M. S. (2011). Changes in cognition. Neurobiology of Aging, 32 Suppl 1, S5863.Google Scholar
Annett, M. (1970). A classification of hand preference by association analysis. British Journal of Psychology, 61, 303321.Google Scholar
Banks, M. S., Aslin, R. N., & Letson, R. D. (1975). Sensitive period for the development of human binocular vision. Science, 190, 675677.Google Scholar
Barbarotto, R., Laiacona, M., Frosio, R., Vecchio, M., Farinato, A., & Capitani, E. (1998). A normative study on visual reaction times and two Stroop colour–word tests. Italian Journal of Neurological Sciences, 19, 161170.Google Scholar
Beck, A. T., Steer, R. A., Ball, R., & Ranieri, W. (1996). Comparison of Beck Depression Inventories–IA and –II in psychiatric outpatients. Journal of Personality Assessment, 67, 588597.CrossRefGoogle Scholar
Bialystok, E., & Miller, B. (1999). The problem of age in second-language acquisition: Influences from language, structure, and task. Bilingualism: Language and Cognition, 2, 127145.Google Scholar
Birdsong, D. (2006). Age and second language acquisition and processing: A selective overview. Language Learning, 56, 949.CrossRefGoogle Scholar
Birdsong, D., & Molis, M. (2001). On the evidence for maturational constraints in second-language acquisition. Journal of Memory and Language, 44, 235249.Google Scholar
Consonni, M., Cafiero, R., Marin, D., Tettamanti, M., Iadanza, A., Fabbro, F., & Perani, D. (2013). Neural convergence for language comprehension and grammatical class production in highly proficient bilinguals is independent of age of acquisition. Cortex, 49, 12521258.Google Scholar
Costa, A., Miozzo, M., & Caramazza, A. (1999). Lexical selection in bilinguals: Do words in the bilingual's two lexicons compete for selection? Journal of Memory and Language, 41, 365397.Google Scholar
Craik, F. I., Bialystok, E., & Freedman, M. (2010). Delaying the onset of Alzheimer disease: Bilingualism as a form of cognitive reserve. Neurology, 75, 17261729.CrossRefGoogle ScholarPubMed
Daw, N. W. (2009). The foundations of development and deprivation in the visual system. Journal of Physiology, 587, 27692773.Google Scholar
Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., van de Moortele, P. F., Lehericy, S., & Le Bihan, D. (1997). Anatomical variability in the cortical representation of first and second language. Neuroreport, 8, 38093815.Google Scholar
Fabbro, F. (2001). The bilingual brain: Cerebral representation of languages. Brain & Language, 79, 211222.Google Scholar
Fabbro, F., Skrap, M., & Aglioti, S. (2000). Pathological switching between languages after frontal lesions in a bilingual patient. Journal of Neurology, Neurosurgery & Psychiatry, 68, 650652.CrossRefGoogle Scholar
Festman, J., Rodriguez-Fornells, A., & Munte, T. F. (2010). Individual differences in control of language interference in late bilinguals are mainly related to general executive abilities. Behavioral and Brain Functions, 6, 112.Google Scholar
Flege, J. E., Yeni-Komshian, G. H., & Liu, S. (1999). Age constraints on second-language acquisition. Journal of Memory and Language, 41, 78104.CrossRefGoogle Scholar
Frenck-Mestre, C., & Prince, P. (1997). Second language autonomy. Journal of Memory and Language, 37, 481501.Google Scholar
Fusco, M. A. (1995). Conference interpretation between cognate languages: Towards a workable methodology. The Interpreters’ Newsletter, 6, 93109.Google Scholar
Geyer, A., Holcomb, P. J., Midgley, K. J., & Grainger, J. (2011). Processing words in two languages: An event-related brain potential study of proficient bilinguals. Journal of Neurolinguistics, 24, 338351.CrossRefGoogle ScholarPubMed
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1, 6781.Google Scholar
Green, D. W. (2003). Neural basis of lexicon and grammar in L2 acquisition: The convergence hypothesis. In van Hout, R., Hulk, A., Kuiken, F. & Towell, R. (eds.), The lexicon–syntax interface in second language acquisition, pp. 197218. Amsterdam: John Benjamins.CrossRefGoogle Scholar
Grosjean, F. (1998). Studying bilinguals: Methodological and conceptual issues. Bilingualism: Language and Cognition, 1, 131149.Google Scholar
Gurd, J. M., Weiss, P. H., Amunts, K., & Fink, G. R. (2003). Within-task switching in the verbal domain. Neuroimage, 20 Suppl 1, S5057.Google Scholar
Hartsuiker, R. J., Costa, A., & Finkbeiner, M. (2008). Bilingualism: Functional and neural perspectives. Acta Psychologica, 128, 413415.Google Scholar
Hernandez, A. E., & Li, P. (2007). Age of acquisition: Its neural and computational mechanisms. Psychological Bulletin, 133, 638650.Google Scholar
Hervais-Adelman, A. G., Moser-Mercer, B., & Golestani, N. (2011). Executive control of language in the bilingual brain: Integrating the evidence from neuroimaging to neuropsychology. Frontiers in Psychology, 2, 18.Google Scholar
Hilchey, M. D., & Klein, R. M. (2011). Are there bilingual advantages on nonlinguistic interference tasks? Implications for the plasticity of executive control processes. Psychonomic Bulletin & Review, 18, 625658.Google Scholar
Hyltenstam, K., & Stroud, C. (1993). Second language regression in Alzheimer's dementia. In Hyltenstam, K. & Viberg, A. (eds.), Progression and regression in language: Sociocultural, neuropsychological and linguistic perspectives, pp. 222242. Cambridge: Cambridge University Press.Google Scholar
Johari, K., Ashrafi, F., Zali, A., Ashayeri, H., Fabbro, F., & Zanini, S. (2013). Grammatical deficits in bilingual Azari–Farsi patients with Parkinson's disease. Journal of Neurolinguistics, 26, 2230.Google Scholar
Johnson, J. S., & Newport, E. L. (1989). Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cognitive Psychology, 21, 6099.CrossRefGoogle ScholarPubMed
Klein, D., Milner, B., Zatorre, R. J., Zhao, V., & Nikelski, J. (1999). Cerebral organization in bilinguals: A PET study of Chinese-English verb generation. Neuroreport, 10, 28412846.Google Scholar
Kotz, S. A. (2009). A critical review of ERP and fMRI evidence on L2 syntactic processing. Brain & Language, 109, 6874.Google Scholar
Kroll, J. F., & De Groot, A. M. B. (eds.), Handbook of bilingualism: Psycholinguistic approaches. New York: Oxford University Press.Google Scholar
Lenneberg, E. (1967). Biological foundations of language. Oxford: Wiley.Google Scholar
Litvan, I., Aarsland, D., Adler, C. H., Goldman, J. G., Kulisevsky, J., Mollenhauer, B., Rodriguez-Oroz, M. C., Troster, A. I., & Weintraub, D. (2011). MDS Task Force on mild cognitive impairment in Parkinson's disease: Critical review of PD-MCI. Movement Disorders, 26, 18141824.Google Scholar
Long, M. (2005). Problems with supposed counter-evidence to the critical period hypothesis. International Review of Applied Linguistics in Language Teaching, 43, 287317.Google Scholar
Lorenzen, B., & Murray, L. L. (2008). Bilingual aphasia: A theoretical and clinical review. American Journal of Speech–Language Pathology, 17, 299317.Google Scholar
MacWhinney, B. (2005). A unified model of language acquisition. In Kroll & De Groot (eds.), pp. 49–67.Google Scholar
Marian, V., Spivey, M., & Hirsch, J. (2003). Shared and separate systems in bilingual language processing: Converging evidence from eyetracking and brain imaging. Brain & Language, 86, 7082.Google Scholar
Mayberry, R. I., & Lock, E. (2003). Age constraints on first versus second language acquisition: Evidence for linguistic plasticity and epigenesis. Brain & Language, 87, 369384.Google Scholar
Mayberry, R. I., Lock, E., & Kazmi, H. (2002). Linguistic ability and early language exposure. Nature, 417, 38.Google Scholar
Meguro, K., Senaha, M. L. H., Caramelli, P., Ishizaki, J., Chubacci, R. Y. S., Meguro, M., Ambo, H., Nitrini, R., & Yamadori, A. (2003). Language deterioration in four Japanese–Portuguese bilingual patients with Alzheimer's disease: A trans-cultural study of Japanese elderly immigrants in Brazil. Psychogeriatrics, 3, 6368.Google Scholar
Miyashita, Y. (2004). Cognitive memory: Cellular and network machineries and their top-down control. Science, 306, 435440.Google Scholar
Mohamed Zied, K., Phillipe, A., Pinon, K., Havet-Thomassin, V., Aubin, G., Roy, A., & Le Gall, D. (2004). Bilingualism and adult differences in inhibitory mechanisms: Evidence from a bilingual Stroop task. Brain and Cognition, 54, 254256.Google Scholar
Morgan-Short, K., Steinhauer, K., Sanz, C., & Ullman, M. T. (2012). Explicit and implicit second language training differentially affect the achievement of native-like brain activation patterns. Journal of Cognitive Neuroscience, 24, 933947.Google Scholar
Morrison, C. M., & Ellis, A. W. (2000). Real age of acquisition effects in word naming and lexical decision. British Journal of Psychology, 91, 167180.CrossRefGoogle ScholarPubMed
Nelson, P. T., Alafuzoff, I., Bigio, E. H., Bouras, C., Braak, H., Cairns, N. J., Castellani, R. J., Crain, B. J., Davies, P., Del Tredici, K., Duyckaerts, C., Frosch, M. P., Haroutunian, V., Hof, P. R., Hulette, C. M., Hyman, B. T., Iwatsubo, T., Jellinger, K. A., Jicha, G. A., Kovari, E., Kukull, W. A., Leverenz, J. B., Love, S., Mackenzie, I. R., Mann, D. M., Masliah, E., McKee, A. C., Montine, T. J., Morris, J. C., Schneider, J. A., Sonnen, J. A., Thal, D. R., Trojanowski, J. Q., Troncoso, J. C., Wisniewski, T., Woltjer, R. L., & Beach, T. G. (2012). Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. Journal of Neuropathology & Experimental Neurology, 71, 362381.Google Scholar
Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 132.Google Scholar
Novelli, G., Papagno, C., Capitani, E., Laiacona, M., & Cappa, S. F. (1986). Tre test clinici di ricerca e produzione lessicale: Taratura su soggetti normali. Archivio di Psicologica, Neurologia e Psichiatria, 47, 477506.Google Scholar
Pakulak, E., & Neville, H. J. (2011). Maturational constraints on the recruitment of early processes for syntactic processing. Journal of Cognitive Neuroscience, 23, 27522765.Google Scholar
Paradis, M. (2004). The neurolinguistic theory of bilingualism. Amsterdam: John Benjamins.Google Scholar
Paradis, M. (2009). Declarative and procedural determinants of second languages. Amsterdam: John Benjamins.Google Scholar
Park, H. R. P., Badzakova-Trajkov, G., & Waldie, K. E. (2012). Language lateralisation in late proficient bilinguals: A lexical decision fMRI study. Neuropsychologia, 50, 688695.Google Scholar
Penfield, W., & Roberts, L. (1959). Speech and brain mechanisms. Princeton, NJ: Princeton University Press.Google Scholar
Perani, D., Abutalebi, J., Paulesu, E., Brambati, S., Scifo, P., Cappa, S. F., & Fazio, F. (2003). The role of age of acquisition and language usage in early, high-proficient bilinguals: An fMRI study during verbal fluency. Human Brain Mapping, 19, 170182.Google Scholar
Perani, D., Paulesu, E., Galles, N. S., Dupoux, E., Dehaene, S., Bettinardi, V., Cappa, S. F., Fazio, F., & Mehler, J. (1998). The bilingual brain. Proficiency and age of acquisition of the second language. Brain, 121, 18411852.Google Scholar
Phillips, N. A., Segalowitz, N., O’Brien, I., & Yamasaki, N. (2004). Semantic priming in a first and second language: Evidence from reaction time variability and event-related brain potentials. Journal of Neurolinguistics, 17, 237262.Google Scholar
Picconi, B., Piccoli, G., & Calabresi, P. (2012). Synaptic dysfunction in Parkinson's disease. Advances in Experimental Medicine and Biology, 970, 553572.Google Scholar
Potter, M. C., So, K. F., Eckardt, B. V., & Feldman, L. B. (1984). Lexical and conceptual representation in beginning and proficient bilinguals. Journal of Verbal Learning and Verbal Behavior, 23, 2338.Google Scholar
Prior, A., & MacWhinney, B. (2010). A bilingual advantage in task switching. Bilingualism: Language and Cognition, 13, 253262.Google Scholar
Proverbio, A. M., Cok, B., & Zani, A. (2002). Electrophysiological measures of language processing in bilinguals. Journal of Cognitive Neuroscience, 14, 9941017.Google Scholar
Riehl, C. M. (2010). The mental representation of bilingualism. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 750758.Google Scholar
Rossi, S., Gugler, M. F., Friederici, A. D., & Hahne, A. (2006). The impact of proficiency on syntactic second-language processing of German and Italian: Evidence from event-related potentials. Journal of Cognitive Neuroscience, 18, 20302048.Google Scholar
Segalowitz, N., & Hulstijn, J. (2005). Automaticity in bilingualism and second language learning. In Kroll & De Groot (eds.), pp. 371–388.Google Scholar
Segalowitz, N., & Trofimovich, P. (2011). Second language processing. In Gass, S. M. & Mackey, A. (eds.), The Routledge handbook of second language acquisition, pp. 179192. New York: Routledge.Google Scholar
Setton, R. (1999). Simultaneous interpretation: A cognitive–pragmatic analysis. Amsterdam: John Benjamins.Google Scholar
Singleton, D. (2005). The critical period hypothesis: A coat of many colours. International Review of Applied Linguistics in Language Teaching, 43, 269285.Google Scholar
Ullman, M. T. (2001). A neurocognitive perspective on language: The Declarative/Procedural Model. Nature Reviews Neuroscience, 2, 717726.CrossRefGoogle ScholarPubMed
Van Assche, E., Duyck, W., Hartsuiker, R. J., & Diependaele, K. (2009). Does bilingualism change native-language reading? Cognate effects in a sentence context. Psychological Science, 20, 923927.Google Scholar
White, L., & Genesee, F. (1996). How native is near-native? The issue of ultimate attainment in adult second language acquisition. Second Language Research, 12, 233265.Google Scholar
Zanini, S., Angeli, V., & Tavano, A. (2011). Primary progressive aphasia in a bilingual speaker: A single-case study. Clinical Linguistics & Phonetics, 25, 553564.Google Scholar
Zanini, S., Tavano, A., & Fabbro, F. (2010). Spontaneous language production in bilingual Parkinson's disease patients: Evidence of greater phonological, morphological and syntactic impairments in native language. Brain & Language, 113, 8489.Google Scholar
Zanini, S., Tavano, A., Vorano, L., Schiavo, F., Gigli, G. L., Aglioti, S. M., & Fabbro, F. (2004). Greater syntactic impairments in native language in bilingual Parkinsonian patients. Journal of Neurology, Neurosurgery & Psychiatry, 75, 16781681.CrossRefGoogle ScholarPubMed
Supplementary material: File

De Carli Supplementary Material

Supplementary Material

Download De Carli Supplementary Material(File)
File 87 KB