Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T19:02:25.701Z Has data issue: false hasContentIssue false

A diffusion model approach to analyzing performance on the Flanker task: The role of the DLPFC

Published online by Cambridge University Press:  17 September 2018

SERGIO MIGUEL PEREIRA SOARES
Affiliation:
Laboratory for Communication Science, Faculty of Education, University of Hong Kong
GABRIEL ONG*
Affiliation:
School of Psychological Science, University of Melbourne, Parkville, Australia
JUBIN ABUTALEBI
Affiliation:
Centre for Neurolinguistics and Psycholinguistics (CNPL), University Vita-Salute San Raffaele, Italy Laboratory for Communication Science, Faculty of Education, University of Hong Kong
NICOLA DEL MASCHIO
Affiliation:
Centre for Neurolinguistics and Psycholinguistics (CNPL), University Vita-Salute San Raffaele, Italy
DAVID SEWELL
Affiliation:
University of Queensland, St Lucia, Australia
BRENDAN WEEKES
Affiliation:
School of Psychological Science, University of Melbourne, Parkville, Australia Laboratory for Communication Science, Faculty of Education, University of Hong Kong Primary Investigator State Key Laboratory for Brain and Cognitive Sciences
*
Address for correspondence: Gabriel Ong, School of Psychological Sciences, University of Melbourne, Melbourne, Australiaghong@student.unimelb.edu.au

Abstract

The anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC) are involved in conflict detection and conflict resolution, respectively. Here, we investigate how lifelong bilingualism induces neuroplasticity to these structures by employing a novel analysis of behavioural performance. We correlated grey matter volume (GMV) in seniors reported by Abutalebi et al. (2015) with behavioral Flanker task performance fitted using the diffusion model (Ratcliff, 1978). As predicted, we observed significant correlations between GMV in the DLPFC and Flanker performance. However, for monolinguals the non-decision time parameter was significantly correlated with GMV in the left DLPFC, whereas for bilinguals the correlation was significant in the right DLPFC. We also found a significant correlation between age and GMV in left DLPFC and the non-decision time parameter for the conflict effect for monolinguals only.

We submit that this is due to cumulative demands on cognitive control over a lifetime of bilingual language processing.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by the GRF grant 754412 awarded by the Research Grants Council of Hong Kong and Seed Grants from the University of Hong Kong.

References

Abutalebi, J., & Clahsen, H. (2015). Bilingualism, cognition, and aging. Bilingualism: Language and Cognition, 18 (1), 12.Google Scholar
Abutalebi, J., & Green, D. W. (2016). Neuroimaging of language control in bilinguals: neural adaptation and reserve. Bilingualism: Language and cognition, 19 (4), 689698.Google Scholar
Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R., Cappa, S. R., & Costa, A. (2011). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22 (9), 20762086. doi:10.1093/cercor/bhr287Google Scholar
Abutalebi, J., Della Rosa, P. A., Gonzaga, A. K. C., Keim, R., Costa, A., & Perani, D. (2013). The role of the left putamen in multilingual language production. Brain and Language, 125 (3), 307315.Google Scholar
Abutalebi, J., Canini, M., Della Rosa, P. A., Sheung, L. P., Green, D. W., & Weekes, B. S. (2014). Bilingualism protects anterior temporal lobe integrity in aging. Neurobiology of Aging, 35 (9), 21262133.Google Scholar
Abutalebi, J., Guidi, L., Borsa, V., Canini, M., Della Rosa, P. A., Parris, B. A., & Weekes, B. S. (2015). Bilingualism provides a neural reserve for aging populations. Neuropsychologia, 69, 201210.Google Scholar
Adesope, O. O., Lavin, T., Thompson, T., & Ungerleider, C. (2010). A systematic review and meta-analysis of the cognitive correlates of bilingualism. Review of Educational Research, 80 (2), 207245.Google Scholar
Alladi, S., Bak, T. H., Duggirala, V., Surampudi, B., Shailaja, M., Shukla, A. K., Chaudhri, J. R., & Kaul, S. (2013). Bilingualism delays age at onset of dementia, independent of education and immigration status. Neurology, 81 (22), 19381944.Google Scholar
Amiez, C., & Petrides, M. (2007). Selective involvement of the mid-dorsolateral prefrontal cortex in the coding of the serial order of visual stimuli in working memory. Proceedings of the National Academy of Sciences, 104 (34), 1378613791.Google Scholar
Ardila, A., & Ramos, E. (2010). Bilingualism and aging. Perspectives on Communication Disorders and Sciences in Culturally and Linguistically Diverse Populations, 17 (3), 7481.Google Scholar
Baddeley, A. (2000). The episodic buffer: a new component of working memory?. Trends in Cognitive Sciences, 4 (11), 417423.Google Scholar
Baum, S., & Titone, D. (2014). Moving toward a neuroplasticity view of bilingualism, executive control, and aging. Applied Psycholinguistics, 35 (5), 857894.Google Scholar
Bialystok, E., Craik, F. I., Klein, R., & Viswanathan, M. (2004). Bilingualism, aging, and cognitive control: evidence from the Simon task. Psychology and Aging, 19 (2), 290303.Google Scholar
Bialystok, E., Craik, F. I., & Ryan, J. (2006). Executive control in a modified antisaccade task: Effects of aging and bilingualism. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32 (6), 1341.Google Scholar
Bialystok, E., Craik, F. I., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45 (2), 459464.Google Scholar
Bialystok, E., Poarch, G., Luo, L., & Craik, F. I. (2014). Effects of bilingualism and aging on executive function and working memory. Psychology and Aging, 29 (3), 696.Google Scholar
Bialystok, E., Abutalebi, J., Bak, T. H., Burke, D. M., & Kroll, J. F. (2016). Aging in two languages: Implications for public health. Ageing Research Reviews, 27, 5660.Google Scholar
Blais, C., & Bunge, S. (2010). Behavioral and neural evidence for item-specific performance monitoring. Journal of Cognitive Neuroscience, 22 (12), 27582767.Google Scholar
Bode, S., Sewell, D. K., Lilburn, S. D., Forte, J. D., Smith, P. L., & Stahl, J. (2012). Predicting perceptual decision biases from early brain activity. Journal of Neuroscience, 32, 1248812498.Google Scholar
Borsa, V. M., Perani, D., Della Rosa, P. A., Videsott, G., Guidi, L., Weekes, B. S., Franceschini, R., & Abutalebi, J. (2018). Bilingualism and healthy aging: Aging effects and neural maintenance. Neuropsychologia, 111, 5161.Google Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108 (3), 624652.Google Scholar
Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402 (6758), 179.Google Scholar
Botvinick, M.M., Cohen, J.D., & Carter, C.S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences, 8 (12), 539546.Google Scholar
Carter, C. S., Macdonald, A. M., Botvinick, M., Ross, L. L., Stenger, V. A., Noll, D., & Cohen, J. D. (2000). Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences, 97 (4), 19441948.Google Scholar
Chen, C., Yang, J., Lai, J., Li, H., & Yuan, J. (2015). Correlating gray matter volume with individual difference in the flanker interference effect. PloS One, 10 (8), e0136877.Google Scholar
Cieslik, E.C., Mueller, V.I., Eickhoff, C.R., Langner, R., & Eickhoff, S.B. (2015). Three key regions for supervisory attentional control: evidence from neuroimaging meta-analyses. Neuroscience and Biobehavioral Reviews, 48, 2234.Google Scholar
Colcombe, S. J., Kramer, A. F., Erickson, K. I., & Scalf, P. (2005). The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychology and Aging, 20 (3), 363.Google Scholar
Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., Webb, A., Jerome, G. J., Marquez, D. X., & Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences, 101 (9), 33163321.Google Scholar
Costa, A., Hernández, M., Costa-Faidella, J., & Sebastián-Gallés, N. (2009). On the bilingual advantage in conflict processing: Now you see it, now you don't. Cognition, 113 (2), 135149.Google Scholar
Cotelli, M., Manenti, R., Cappa, S. F., Geroldi, C., Zanetti, O., Rossini, P. M., & Miniussi, C. (2006). Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Archives of Neurology, 63 (11), 16021604.Google Scholar
Cotelli, M., Manenti, R., Cappa, S. F., Zanetti, O., & Miniussi, C. (2008). Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. European Journal of Neurology, 15 (12), 12861292.Google Scholar
Craik, F. I., & Bialystok, E. (2006). Cognition through the lifespan: mechanisms of change. Trends in Cognitive Sciences, 10 (3), 131138.Google Scholar
Craik, F. I., Bialystok, E., & Freedman, M. (2010). Delaying the onset of Alzheimer disease Bilingualism as a form of cognitive reserve. Neurology, 75 (19), 17261729.Google Scholar
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2007). Que PASA? The posterior–anterior shift in aging. Cerebral Cortex, 18 (5), 12011209.Google Scholar
Della Rosa, P. A., Videsott, G., Borsa, V. M., Canini, M., Weekes, B. S., Franceschini, R., & Abutalebi, J. (2013). A neural interactive location for multilingual talent. Cortex, 49 (2), 605608.Google Scholar
Del Maschio, N., Sulpizio, S., Gallo, F., Fedeli, D., Weekes, B. S., & Abutalebi, J. (2018). Neuroplasticity across the lifespan and aging effects in bilinguals and monolinguals. Brain and Cognition, 125, 118126.Google Scholar
Desmet, C., Fias, W., Hartstra, E., & Brass, M. (2011). Errors and conflict at the task level and the response level. Journal of Neuroscience, 31 (4), 13661374.Google Scholar
Dixon, R. A., Garrett, D. D., Lentz, T. L., MacDonald, S. W., Strauss, E., & Hultsch, D. F. (2007). Neurocognitive markers of cognitive impairment: exploring the roles of speed and inconsistency. Neuropsychology, 21 (3), 381399.Google Scholar
Duchek, J. M., Balota, D. A., Tse, C. S., Holtzman, D. M., Fagan, A. M., & Goate, A. M. (2009). The utility of intraindividual variability in selective attention tasks as an early marker for Alzheimer's disease. Neuropsychology, 23 (6), 746758.Google Scholar
Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8 (12), 17841790.Google Scholar
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16 (1), 143149.Google Scholar
Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14 (3), 340347.Google Scholar
Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. NeuroImage, 18 (1), 4257.Google Scholar
Friederici, A. D. (2011). The brain basis of language processing: from structure to function. Physiological Reviews, 91 (4), 13571392.Google Scholar
Gbadeyan, O., McMahon, K., Steinhauser, M., & Meinzer, M. (2016). Stimulation of dorsolateral prefrontal cortex enhances adaptive cognitive control: a high-definition transcranial direct current stimulation study. Journal of Neuroscience, 36 (50), 1253012536.Google Scholar
Gold, B. T., Kim, C., Johnson, N. F., Kryscio, R. J., & Smith, C. D. (2013). Lifelong bilingualism maintains neural efficiency for cognitive control in aging. Journal of Neuroscience, 33 (2), 387396.Google Scholar
Grafman, J. (2000). Conceptualizing functional neuroplasticity. Journal of Communication Disorders, 33 (4), 345356.Google Scholar
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1 (2), 6781.Google Scholar
Green, D. W., & Abutalebi, J. (2013). Language control in bilinguals: The adaptive control hypothesis. Journal of Cognitive Psychology, 25 (5), 515530.Google Scholar
Grogan, A., Jones, Ō. P., Ali, N., Crinion, J., Orabona, S., Mechias, M. L., Ramsden, S., Green, D. W., & Price, C. J. (2012). Structural correlates for lexical efficiency and number of languages in non-native speakers of English. Neuropsychologia, 50 (7), 13471352.Google Scholar
Heathcote, A., Popiel, S. J., & Mewhort, D. J. (1991). Analysis of response time distributions: An example using the Stroop task. Psychological Bulletin, 109 (2), 340347.Google Scholar
Henson, R. N. A., Rugg, M. D., Shallice, T., & Dolan, R. J. (2000). Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. Journal of Cognitive Neuroscience, 12 (6), 913923.Google Scholar
Hilchey, M. D., & Klein, R. M. (2011). Are there bilingual advantages on nonlinguistic interference tasks? Implications for the plasticity of executive control processes. Psychonomic bulletin & review, 18 (4), 625658.Google Scholar
Jackson, J. D., Balota, D. A., Duchek, J. M., & Head, D. (2012). White matter integrity and reaction time intraindividual variability in healthy aging and early-stage Alzheimer disease. Neuropsychologia, 50 (3), 357366.Google Scholar
Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303 (5660), 10231026.Google Scholar
Kong, A. P. H., Abutalebi, J., Lam, K. S. Y., & Weekes, B. (2014). Executive and language control in the multilingual brain. Behavioural neurology, 2014.Google Scholar
Kroll, J. F., & Bialystok, E. (2013). Understanding the consequences of bilingualism for language processing and cognition. Journal of Cognitive Psychology, 25 (5), 497514.Google Scholar
Kroll, J. F., & Stewart, E. (1994). Category interference in translation and picture naming: Evidence for asymmetric connections between bilingual memory representations. Journal of memory and language, 33 (2), 149174.Google Scholar
Liu, X., Banich, M. T., Jacobson, B. L., & Tanabe, J. L. (2004). Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. Neuroimage, 22 (3), 10971106.Google Scholar
Luk, G., Anderson, J. A., Craik, F. I., Grady, C., & Bialystok, E. (2010). Distinct neural correlates for two types of inhibition in bilinguals: Response inhibition versus interference suppression. Brain and Cognition, 74 (3), 347357.Google Scholar
Luks, T. L., Oliveira, M., Possin, K. L., Bird, A., Miller, B. L., Weiner, M. W., & Kramer, J. H. (2010). Atrophy in two attention networks is associated with performance on a Flanker task in neurodegenerative disease. Neuropsychologia, 48 (1), 165170.Google Scholar
MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288 (5472), 18351838.Google Scholar
Matzke, D., & Wagenmakers, E. J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review, 16 (5), 798817.Google Scholar
Mechelli, A., Crinion, J. T., Noppeney, U., O'doherty, J., Ashburner, J., Frackowiak, R. S., & Price, C. J. (2004). Neurolinguistics: structural plasticity in the bilingual brain. Nature, 431 (7010), 757.Google Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24 (1), 167202.Google Scholar
Mulder, M. J., Wagenmakers, E. J., Ratcliff, R., Boekel, W., & Forstmann, B. U. (2012). Bias in the brain: a diffusion model analysis of prior probability and potential payoff. Journal of Neuroscience, 32 (7), 23352343.Google Scholar
Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral Neuroscience, 7 (1), 117.Google Scholar
Olsen, R. K., Pangelinan, M. M., Bogulski, C., Chakravarty, M. M., Luk, G., Grady, C. L., & Bialystok, E. (2015). The effect of lifelong bilingualism on regional grey and white matter volume. Brain Research, 1612, 128139.Google Scholar
Ong, G., Sewell, D. K., Weekes, B. S., McKague, M., & Abutalebi, J. (2017). A diffusion model approach to analysing the bilingual advantage for the Flanker task: The role of attentional control processes. Journal of Neurolinguistics, 43, 2838.Google Scholar
Paap, K. R., Johnson, H. A., & Sawi, O. (2016). Should the search for bilingual advantages in executive functioning continue?. Cortex, 74 (4), 305314.Google Scholar
Perani, D., & Abutalebi, J. (2015). Bilingualism, dementia, cognitive and neural reserve. Current Opinion in Neurology, 28 (6), 618625.Google Scholar
Perani, D., Farsad, M., Ballarini, T., Lubian, F., Malpetti, M., Fracchetti, A., Magnani, G., March, A., & Abutalebi, J. (2017). The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer's dementia. Proceedings of the National Academy of Sciences, 114 (7), 16901695.Google Scholar
Peterson, B. S., Kane, M. J., Alexander, G. M., Lacadie, C., Skudlarski, P., Leung, H. C., May, J., & Gore, J. C. (2002). An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cognitive Brain Research, 13 (3), 427440.Google Scholar
Petrides, M. (1991, December). Functional specialization within the dorsolateral frontal cortex for serial order memory. Proceedings of the Royal Society of London B, 246 (1317), 299306.Google Scholar
Pliatsikas, C., DeLuca, V., Moschopoulou, E., & Saddy, J. D. (2017). Immersive bilingualism reshapes the core of the brain. Brain Structure and Function, 222 (4), 17851795.Google Scholar
Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139 (1), 2338.Google Scholar
Radman, N., Britz, J., Bütler, K., Speirer, L., Weekes, B. S., & Annoni, J-M (in press) Dorsolateral prefrontal transcranial Direct Current Stimulation modulates language processing but does not facilitate overt second language word production. Frontiers in Neuroscience. doi: 10.3389/fnins.2018.00490Google Scholar
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85 (2), 59108.Google Scholar
Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., & Koeppe, R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of cognitive neuroscience, 12 (1), 174187.Google Scholar
Richardson, F. M., Thomas, M. S., Filippi, R., Harth, H., & Price, C. J. (2010). Contrasting effects of vocabulary knowledge on temporal and parietal brain structure across lifespan. Journal of Cognitive Neuroscience, 22 (5), 943954.Google Scholar
Rowe, J. W., & Kahn, R. L. (1987). Human aging: usual and successful. Science, 237 (4811), 143149.Google Scholar
Rowe, J. W., & Kahn, R. L. (2015). Successful aging 2.0: conceptual expansions for the 21st century. The Journals of Gerontology: Series B, 70 (4), 593596.Google Scholar
Rugg, M. D. (2004). Retrieval processing in human memory: Electrophysiological and fMRI evidence. In Gazzaniga, M. S. (Ed.), The Cognitive Neurosciences (pp. 727737). Cambridge, MA, US: MIT Press.Google Scholar
Shallice, T., & Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Phil. Trans. R. Soc. Lond. B, 351 (1346), 14051412.Google Scholar
Valian, V. (2015). Bilingualism and cognition. Bilingualism: Language and Cognition, 18 (1), 324.Google Scholar
Vanderhasselt, M. A., De Raedt, R., & Baeken, C. (2009). Dorsolateral prefrontal cortex and Stroop performance: tackling the lateralization. Psychonomic Bulletin & Review, 16 (3), 609612.Google Scholar
Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: An empirical validation. Memory & Cognition, 32 (7), 12061220.Google Scholar
Voytek, B., Davis, M., Yago, E., Barceló, F., Vogel, E. K., & Knight, R. T. (2010). Dynamic neuroplasticity after human prefrontal cortex damage. Neuron, 68 (3), 401408.Google Scholar
Wang, L., & Weekes, B. (2014). Neural correlates of the Simon effect modulated by practice with spatial mapping. Neuropsychologia, 63, 7284.Google Scholar
West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120 (2), 272.Google Scholar
Wilson, B., Marslen-Wilson, W. D., & Petkov, C. I. (2017). Conserved sequence processing in primate frontal cortex. Trends in Neurosciences, 40 (2), 7282.Google Scholar
Wittfoth, M., Buck, D., Fahle, M., & Herrmann, M. (2006). Comparison of two Simon tasks: neuronal correlates of conflict resolution based on coherent motion perception. NeuroImage, 32 (2), 921929.Google Scholar
Zahodne, L. B., Schofield, P. W., Farrell, M. T., Stern, Y., & Manly, J. J. (2014). Bilingualism does not alter cognitive decline or dementia risk among Spanish-speaking immigrants. Neuropsychology, 28 (2), 238246.Google Scholar
Zanto, T. P., Rubens, M. T., Thangavel, A., & Gazzaley, A. (2011). Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nature Neuroscience, 14 (5), 656661.Google Scholar
Zhang, L. [張達]. (2015). Using structural and functional MRI to assess the effects of ethnicity on healthy ageing in the human brain. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5544004.Google Scholar
Zmigrod, S., Zmigrod, L., & Hommel, B. (2016). Transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex affects stimulus conflict but not response conflict. Neuroscience, 322, 320325.Google Scholar
Zou, L., Ding, G., Abutalebi, J., Shu, H., & Peng, D. (2012). Structural plasticity of the left caudate in bimodal bilinguals. Cortex, 48 (9), 11971206.Google Scholar