Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T21:29:15.028Z Has data issue: false hasContentIssue false

Language background affects online word order processing in a second language but not offline

Published online by Cambridge University Press:  06 July 2018

ANNIKA ANDERSSON*
Affiliation:
Linnaeus University, Department of Swedish, Sweden Lund University, Lund University Humanities Lab, Sweden
SUSAN SAYEHLI
Affiliation:
Stockholm University, Centre for Research on Bilingualism, Sweden Lund University, Lund University Humanities Lab, Sweden
MARIANNE GULLBERG
Affiliation:
Lund University, Centre for Languages and Literature; Lund University Humanities Lab, Sweden
*
Address for correspondence: Annika Andersson, Linnaeus University, Trummenvägen, SE-351 95 Växjö, Sweden, Ph.: +46 470 767434. annika.andersson@lnu.se

Abstract

This study examines possible crosslinguistic influence on basic word order processing in a second language (L2). Targeting Swedish V2 word order we investigate adult German learners (+V2 in the L1) and English learners (-V2 in the L1) of Swedish who are matched for proficiency. We report results from two offline behavioural tasks (written production, metalinguistic judgements), and online processing as measured by event-related potentials (ERPs). All groups showed sensitivity to word order violations behaviourally and neurocognitively. Behaviourally, the learners differed from the native speakers only on judgements. Crucially, they did not differ from each other. Neurocognitively, all groups showed a similar increased centro-parietal P600 ERP-effect, but German learners (+V2) displayed more nativelike anterior ERP-effects than English learners (-V2). The results suggest crosslinguistic influence in that the presence of a similar word order in the L1 can facilitate online processing in an L2 – even if no offline behavioural effects are discerned.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

* We gratefully acknowledge funding from the Swedish Research Council, grant number 421-2010-2114 to M. Gullberg (Swedish Word Order Processing in Second Language Learners and Native Speakers: A Psycholinguistic and Neurocognitive Approach). We also thank Lund University Humanities Lab. We are especially grateful to Henrik Garde for programming support, and to Dr Joost van de Weijer and Dr Johan Frid for statistical support. We also thank all our participants. We express special thanks to the anonymous reviewers and to Dr John Drury for input on a previous version of this paper. All remaining errors are our own.

Supplementary material can be found online at https://doi.org/10.1017/S1366728918000573

References

Abrahamsson, N., & Hyltenstam, K. (2009). Age of onset and nativelikeness in a second language: Listener perception versus linguistic scrutiny. Language Learning, 59 (2), 249306.Google Scholar
Allen, D. (1992). Oxford placement test, Oxford: Oxford University Press.Google Scholar
Alemán Bañón, J., Fiorentino, R., & Gabriele, A. (2014). Morphosyntactic processing in advanced second language (L2) learners: An event-related potential investigation of the effects of L1–L2 similarity and structural distance. Second Language Research, 30, 275306. doi:10.1177/0267658313515671Google Scholar
Almor, A., de Carvalho Maia, J., Cunha Lima, M. L., Vernice, M., & Gelormini-Lezama, C. (2017). Language processing, acceptability, and statistical distribution: A study of null and overt subjects in Brazilian Portuguese. Journal of Memory and Language, 92, 98113. doi:https://doi.org/10.1016/j.jml.2016.06.001Google Scholar
Bardel, C., & Falk, Y. (2007). The role of the second language in third language acquisition: the case of Germanic syntax. Second Language Research, 23, 459484. doi:10.1177/0267658307080557Google Scholar
Bock, K., & Miller, C. A. (1991). Broken agreement. Cognitive Psychology, 23, 4593. doi:https://doi.org/10.1016/0010-0285(91)90003-7.Google Scholar
Bohnacker, U. (2006). When Swedes begin to learn German: from V2 to V2. Second Language Research, 22, 443486. doi:10.1191/0267658306sr275oaGoogle Scholar
Bolander, M. (1988). Is there any order? On word order in Swedish learner language. Journal of Multilingual and Multicultural Development, 9, 97113.Google Scholar
Caffarra, S., Molinaro, N., Davidson, D., & Carreiras, M. (2015). Second language syntactic processing revealed through event-related potentials: An empirical review. Neuroscience & Biobehavioral Reviews, 51, 3147. doi:https://doi.org/10.1016/j.neubiorev.2015.01.010Google Scholar
Chen, L., Shu, H., Liu, Y., Zhao, J., & Ping, L. (2007). ERP signatures of subject-verb agreement in L2 learning. Bilingualism: Language and Cognition, 10, 161174. doi:10.1017/s136672890700291xGoogle Scholar
Clahsen, H., & Felser, C. (2006). Grammatical processing in language learners. Applied Psycholinguistics, 27, 342.Google Scholar
Council of Europe (2001). Common European Framework of Reference for Languages: learning, teaching, assessment. Cambridge: Cambridge University Press.Google Scholar
Davidson, D. J., & Indefrey, P. (2009). An event-related potential study on changes of violation and error responses during morphosyntactic learning. Journal of Cognitive Neuroscience, 21, 433446.Google Scholar
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynanmics. Journal of Neuroscience Methods, 134, 921.Google Scholar
den Ouden, D.-B., & Bastiaanse, R. (2009). The electrophysiological manifestation of Dutch verb second violations. Journal of Psycholinguistic Research, 38, 201219. doi:10.1007/s10936-009-9106-6Google Scholar
Dowens, M. G., Guo, T., Guo, J., Barber, H., & Carreiras, M. (2011). Gender and number processing in Chinese learners of Spanish – Evidence from Event Related Potentials. Neuropsychologia, 49, 1651–1659. doi:https://doi.org/10.1016/j.neuropsychologia.2011.02.034Google Scholar
Dowens, M. G., Vergara, M., Barber, H. A., & Carreiras, M. (2010). Morphosyntactic processing in late second-language learners. Journal of Cognitive Neuroscience, 22 (8), 18701887. doi:10.1162/jocn.2009.21304Google Scholar
Dryer, M. S. (2013). Order of Subject, Object and Verb. In Dryer, M. S. & Haspelmath, M. (eds.), The world atlas of language structures online. Leipzig: Max Planck Institute for Evolutionary Anthropology.Google Scholar
Dulay, H. C., & Burt, M. K. (1974). Natural sequences in child second language acquisition. Language Learning, 24, 3753.Google Scholar
Engel, U. (1974). Syntaktische Besonderheiten der deutschen Alltagssprache. In Moser, H. (ed.), Gesprochene Sprache: Jahrbuch 1972 (vol. 26), pp. 199228. Düsseldorf: Schwann.Google Scholar
Erdocia, K., Laka, I., Mestres-Missé, A., & Rodriguez-Fornells, A. (2009). Syntactic complexity and ambiguity resolution in a free word order language: Behavioral and electrophysiological evidences from Basque. Brain and Language, 109, 117. doi: https://doi.org/10.1016/j.bandl.2008.12.003Google Scholar
Ericsson, E., Olofsson, J. K., Nordin, S., Rudolfsson, T., & Sandström, G. (2008). Is the P600/SPS affected by the richness of semantic content? A linguistic ERP study in Swedish. Scandinavian Journal of Psychology, 49, 19. doi:10.1111/j.1467-9450.2007.00604.xGoogle Scholar
Fanselow, G., & Frisch, S. (2006). Effects of processing difficulty on judgements of acceptability. In Fanselow, G., Vogel, R. & Schlesewsky, M. (eds.), Gradience in grammar: Generative perspectives, pp. 291316. Oxford: Oxford University Press.Google Scholar
Fathman, A., & LoCoco, V. (1989). Word order contrasts and production in three target languages. In Dechert, H. & Raupach, R. (eds.), Transfer in language production, pp. 159170. Norwood, NJ: Ablex Publishing Corporation.Google Scholar
Fiebach, C. J., Schlesewsky, M., & Friederici, A. D. (2002). Separating syntactic memory costs and syntactic integration costs during parsing: The processing of German WH-questions. Journal of Memory and Language, 47, 250272. doi:10.1016/s0749-596x(02)00004-9Google Scholar
Foucart, A., & Frenck-Mestre, C. (2012). Can late L2 learners acquire new grammatical features? Evidence from ERPs and eye-tracking. Journal of Memory & Language, 66, 226248.Google Scholar
Franceschina, F. (2005). Fossilized second language grammars: The acquisition of grammatical gender (vol. 38). Amsterdam/Philadelphia: John Benjamins Publishing.Google Scholar
Frazier, L. (1987). Sentence processing: A tutorial review. In Coltheart, M. (ed.), Attention and performance (vol. 12 The psychology of reading, pp. 559586). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Frazier, L. (2013). Syntax in sentence processing. In van Gompel, R. P. G. (ed.), Sentence Processing (vol. Current issues in the psychology of language), pp. 2150. New York NY: Psychology Press: Taylor & Francis Group.Google Scholar
Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Sciences, 6, 7884.Google Scholar
Friederici, A. D., Hahne, A., & Saddy, D. (2002). Distinct neurophysiological patterns reflecting aspects of syntactic complexity and syntactic repair. Journal of Psycholinguistic Research, 31, 4563.10.1023/A:1014376204525Google Scholar
Friederici, A. D., Pfeifer, E., & Hahne, A. (1993). Event-related brain potentials during natural speech processing: Effects of semantic, morphological and syntactic violations. Cognitive Brain Research, 1, 183192.Google Scholar
Friederici, A. D., Steinhauer, K., Mecklinger, A., & Meyer, M. (1998). Working memory constraints on syntactic ambiguity resolution as revealed by electrical brain responses. Biological Psychology, 47, 193221. doi:https://doi.org/10.1016/S0301-0511(97)00033-1Google Scholar
Friederici, A. D., Steinhauer, K., & Pfeifer, E. (2002). Brain signatures of artificial language processing: evidence challenging the critical period hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 99, 529534.Google Scholar
Ganuza, N. (2008). Syntactic variation in the Swedish of adolescents in multilingual urban settings: Subject-verb order in declaratives, questions and subordinate clauses. (Doctoral thesis), Stockholm University, Stockholm.Google Scholar
Gouvea, A. C., Phillips, C., Kazanina, N., & Poeppel, D. (2010). The linguistic processes underlying the P600. Language and Cognitive Processes, 25, 149188. doi: 10.1080/01690960902965951Google Scholar
Greenberg, J. H. (1966). Some universals of grammar with particular reference to the order of meaningful elements. In Greenberg, J. H. (ed.), Universals of language (2nd ed.), pp. 73113. Cambridge: MIT.Google Scholar
Gullberg, M., & Indefrey, P. (2003). Language background questionnaire. The Dynamics of Multilingual Processing. Nijmegen: Max Planck Institute for Psycholinguistics.Google Scholar
Hagoort, P., Brown, C., & Groothusen, J. (1993). The syntactic positive shift (SPS) as an ERP measure of syntactic processing. Language and Cognitive Processes, 8, 439483. doi:10.1080/01690969308407585Google Scholar
Hahne, A. (2001). What's different in second-language processing? Evidence from event-related brain potentials. Journal of Psycholinguistic Research, 30, 251266.Google Scholar
Hahne, A., & Friederici, A. D. (2001). Processing a second language: Late learners' comprehension mechanisms as revealed by event-related brain potentials. Bilingualism: Language & Cognition, 4, 123141.Google Scholar
Hahne, A., Mueller, J. L., & Clahsen, H. (2006). Morphological processing in a second language: Behavioral and event-related brain potential evidence for storage and decomposition. Journal of Cognitive Neuroscience, 18, 121134. doi:10.1162/089892906775250067Google Scholar
Håkansson, G., Pienemann, M., & Sayehli, S. (2002). Transfer and typological proximity in the context of second language processing. Second Language Research, 18, 250273. doi:10.1191/0267658302sr206oaGoogle Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore: Paul H Brookes Publishing.Google Scholar
Hartsuiker, R. J., & Moors, A. (2017). On the automaticity of language processing. In Schmid, H.-J. (ed.), Entrenchment and the psychology of language learning: How we reorganize and adapt linguistic knowledge, pp. 201225. Boston, MA, US: De Gruyter Mouton.Google Scholar
Häussler, J., Grant, M., Fanselow, G., & Frazier, L. (2015). Superiority in English and German: cross-language grammatical differences? Syntax, 18, 235265. doi:10.1111/synt.12030Google Scholar
Hawkins, R., & Chan, C. Y. H. (1997). The partial availability of Universal Grammar in second language acquisition: the ‘failed functional features hypothesis’. Second Language Research, 13, 187226.Google Scholar
Hernandez, A. E., & Li, P. (2007). Age of acquisition: Its neural and computational mechanisms. Psychological Bulletin, 133, 638650.Google Scholar
Hoff, E. (2003). The specificity of environmental influence: Socioeconomic status affects early vocabulary development via maternal speech. Child Development, 74, 1368– 1378.Google Scholar
Hollingshead, A. (1975). Four factor index of social status. Yale University Department of Sociology. New Haven.Google Scholar
Hopp, H. (2006). Syntactic features and reanalysis in near-native processing. Second Language Research, 22, 369397. doi:10.1191/0267658306sr272oaGoogle Scholar
Hopp, H. (2010). Ultimate attainment in L2 inflection: Performance similarities between non-native and native speakers. Lingua, 120, 901931. doi: https://doi.org/10.1016/j.lingua.2009.06.004Google Scholar
Hyltenstam, K. (1977). Implicational patterns in interlangauge syntax variation. Language Learning, 27, 383411.Google Scholar
Hyltenstam, K. (1978). Variability in interlanguage system. Working papers Phonetics Laboratory, Dept. of General Linguistics, Lund University, 18, 179.Google Scholar
Isel, F., Hahne, A., Maess, B., & Friederici, A. D. (2007). Neurodynamics of sentence interpretation: ERP evidence from French. Biological Psychology, 74, 337346.Google Scholar
Jarvis, S., & Pavlenko, A. (2008). Crosslinguistic influence in language and cognition. New York: Routledge.Google Scholar
Jeong, H., Sugiura, M., Sassa, Y., Haji, T., Usui, N., Taira, M., Horie, K., Sato, S., & Kawashima, R. (2007). Effect of syntactic similarity on cortical activation during second language processing: A comparison of English and Japanese among native Korean trilinguals. Human Brain Mapping, 28, 194204. doi:10.1002/hbm.20269Google Scholar
Jeong, H., Sugiura, M., Sassa, Y., Yokoyama, S., Horie, K., Sato, S., Taira, M., & Kawashima, R. (2007). Cross-linguistic influence on brain activation during second language processing: an fMRI study. Bilingualism: Language and Cognition, 10, 175187. doi:10.1017/s1366728907002921Google Scholar
Jiang, N. (2004). Morphological insensitivity in second language processing. Applied Psycholinguistics, 25, 603634. doi:10.1017/S0142716404001298Google Scholar
Jiang, N. (2007). Selective integration of linguistic knowledge in adult second language learning. Language Learning, 57, 133. doi:10.1111/j.1467-9922.2007.00397.xGoogle Scholar
Jörgensen, N. (1976). Meningsbyggnaden i talad svenska. Lund: Studentlitteratur.Google Scholar
Josefsson, G. (2003). Input and output: sentence patterns in child and adult grammar. In Josefsson, G., Platzack, C. & Håkansson, G. (eds.), The acquisition of Swedish grammar, pp. 95133. Amsterdam: Benjamins.Google Scholar
Kaan, E. (1997). Processing subject-object ambiguities in Dutch. (PhD), Rijksuniversiteit Groningen.Google Scholar
Kaan, E., Harris, A., Gibson, E., & Holcomb, P. (2000). The P600 as an index of syntactic integration difficulty. Language and Cognitive Processes, 15, 159201. doi:10.1080/016909600386084Google Scholar
Kaan, E., & Swaab, T. Y. (2003). Repair, revision, and complexity in syntactic analysis: An electrophysiological differentiation. Journal of Cognitive Neuroscience, 15, 98110. doi:10.1162/089892903321107855Google Scholar
Kellerman, E., & Sharwood Smith, M. (1986). Crosslinguistic influence in second language acquisition. Oxford, England: Pergamon Press.Google Scholar
Kim, E., Baek, S., & Tremblay, A. (2015). The role of island constraints in second language sentence processing. Language Acquisition, 22, 384416. doi:10.1080/10489223.2015.1028630Google Scholar
Klein, W., & Perdue, C. (1992). Utterance structure: developing grammars again. Amsterdam: John Benjamins Publishing Company.Google Scholar
Kotsinas, U. B. (1988). Immigrant children's Swedish — a new variety? Journal of Multilingual and Multicultural Development, 9, 129140. doi:10.1080/01434632.1988.9994324Google Scholar
Kotsinas, U. B. (1998). Language contact in Rinkeby, an immigrant suburb. In Androutsopoulos, J. K. & Scholz, A. (eds.), Jugendsprache – langue des jeunes – youth language. Linguistische und soziolinguistische Perspektiven, pp. 125148. Frankfurt am Main: Lang.Google Scholar
Los, B. (2012). The loss of verb-second and the switch from bounded to unbounded systems. In Meurman-Solin, A., López-Couso Los, M. J. B. (eds.), Information structure and syntactic change in the history of English, pp. 2146. Oxford: Oxford University Press.Google Scholar
Los, B. (2015). A historical syntax of English. Edinburgh: Edinburgh University Press.Google Scholar
MacWhinney, B., Bates, E., & Kliegl, R. (1984). Cue validity and sentence interpretation in English, German, and Italian. Journal of Verbal Learning and Verbal Behavior, 23, 127150. doi:https://doi.org/10.1016/S0022-5371(84)90093-8Google Scholar
McLaughlin, J., Tanner, D., Pitkänen, I., Frenck-Mestre, C., Inoue, K., Valentine, G., & Osterhout, L. (2010). Brain potentials reveal discrete stages of L2 grammatical learning. Language Learning, 60 (S1), 123150.Google Scholar
Meisel, J., Clahsen, H., & Pienemann, M. (1981). On determining developmental stages in natural second language acquisition. Studies in Second Language Acquisition, 3, 109135.Google Scholar
Meng, M., & Bader, M. (2000). Ungrammaticality detection and garden path strength: evidence for serial parsing. Language and Cognitive Processes, 15, 615666.Google Scholar
Mishra, R. K., Pandey, A., & Srinivasan, N. (2011). Revisiting the scrambling complexity hypothesis in sentence processing: a self-paced reading study on anomaly detection and scrambling in Hindi. Reading and Writing, 24, 709727. doi:10.1007/s11145-010-9255-xGoogle Scholar
Morgan-Short, K. (2014). Electrophysiological approaches to understanding second language acquisition: a field reaching its potential. Annual Review of Applied Linguistics, 34, 1536. doi:10.1017/S026719051400004XGoogle Scholar
Morgan-Short, K., Finger, I., Grey, S., & Ullman, M. T. (2012). Second language processing shows increased native-like neural responses after months of no exposure. PLoS One, 7, 118. doi:10.1371/journal.pone.0032974Google Scholar
Morgan-Short, K., Sanz, C., Steinhauer, K., & Ullman, M. T. (2010). Second language acquisition of gender agreement in explicit and implicit training conditions: An Event-related potential study. Language Learning, 60, 154193.Google Scholar
Neville, H. J., Coffey, S. A., Holcomb, P. J., & Tallal, P. (1993). The neurobiology of sensory and language processing in language-impaired children. Journal of Cognitive Neuroscience, 5, 235253.Google Scholar
Neville, H. J., Nicol, J. L., Barss, A., Forster, K. I., & Garrett, M. F. (1991). Syntactically based sentence processing classes: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 3, 151165. doi:10.1162/jocn.1991.3.2.151Google Scholar
Newman, A. J., Tremblay, A., Nichols, E. S., Neville, H. J., & Ullman, M. T. (2011). The influence of language proficiency on lexical semantic processing in native and late learners of English. Journal of Cognitive Neuroscience, 24, 12051223. doi:10.1162/jocn_a_00143Google Scholar
Newport, E. L. (1990). Maturational constraints on language learning. Cognitive Science, 14, 1128.Google Scholar
Odlin, T. (1989). Language transfer: Cross-linguistic influence in language learning. Cambridge, UK: Cambridge University Press.Google Scholar
Ojima, S., Nakata, H., & Kakigi, R. (2005). An ERP study of second language learning after childhood: Effects of proficiency. Journal of Cognitive Neuroscience, 17, 12121228.Google Scholar
Oldfield, R. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97113.Google Scholar
Osterhout, L. (1997). On the brain response to syntactic anomalies: manipulations of word position and word class reveal individual differences. Brain and Language, 59, 494522. doi:https://doi.org/10.1006/brln.1997.1793Google Scholar
Osterhout, L., & Holcomb, P. J. (1992). Event-related brain potentials elicited by syntactic anomaly. Journal of Memory and Language, 31, 785806. doi:10.1016/0749-596x(92)90039-zGoogle Scholar
Osterhout, L., & Holcomb, P. J. (1993). Event-related potentials and syntactic anomaly: Evidence of anomaly detection during the perception of continuous speech. Language and Cognitive Processes, 8, 413437.Google Scholar
Osterhout, L., Holcomb, P. J., & Swinney, D. A. (1994). Brain potentials elicited by garden-path sentences: Evidence of the application of verb information during parsing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 786803. doi:10.1037/0278-7393.20.4.786Google Scholar
Osterhout, L., McLaughlin, J., Pitkanen, I., Frenck-Mestre, C., & Molinaro, N. (2006). Novice learners, longitudinal designs, and event-related potentials: A means for exploring the neurocognition of second language processing. Language Learning, 56 (Suppl 1), 199230.Google Scholar
Osterhout, L., & Nicol, J. (1999). On the distinctiveness, independence, and time course of the brain responses to syntactic and semantic anomalies. Language and Cognitive Processes, 14, 283317. doi:10.1080/016909699386356Google Scholar
Osterhout, L., Poliakov, A., Inoue, K., McLaughlin, J., Valentine, G., Pitkanen, I., Frenck-Mestre, C., & Hirschensohn, J. (2008). Second-language learning and changes in the brain. Journal of Neurolinguistics, 21, 509521. doi:10.1016/j.jneuroling.2008.01.001Google Scholar
Pakulak, E., & Neville, H. J. (2010). Proficiency differences in syntactic processing in monolingual native speakers indexed by event-related brain potentials. Journal of Cognitive Neuroscience, 22, 27282744.Google Scholar
Pakulak, E., & Neville, H. J. (2011). Maturational constraints on the recruitment of early processes for syntactic processing. Journal of Cognitive Neuroscience, 23, 27522765.Google Scholar
Pauker, E., Itzhak, I., Baum, S. R., & Steinhauer, K. (2011). Effects of cooperating and conflicting prosody in spoken English garden path sentences: ERP evidence for the boundary deletion hypothesis. Journal of Cognitive Neuroscience, 23, 27312751. doi:10.1162/jocn.2011.21610Google Scholar
Payne, B. R., Grison, S., Gao, X., Christianson, K., Morrow, D. G., & Stine-Morrow, E. A. L. (2014). Aging and individual differences in binding during sentence understanding: evidence from temporary and global syntactic attachment ambiguities. Cognition, 130, 157173.Google Scholar
Pienemann, M., & Håkansson, G. (2007). Response article Full transfer vs. developmentally moderated transfer: a reply to Bohnacker. Second Language Research, 23, 485493. doi:10.1177/0267658307080332Google Scholar
Roberts, L. (2012). Individual differences in second language sentence processing. Language Learning, 62 (2), 172188.Google Scholar
Roberts, L. (2013). Sentence processing in bilinguals. In van Gompel, R. P. G. (ed.), Sentence processing (Vol. Current issues in the psychology of language), pp. 221246. New York NY: Psychology Press: Taylor & Francis Group.Google Scholar
Rösler, F., Pechmann, T., Streb, J., Röder, B., & Hennighausen, E. (1998). Parsing of sentences in a language with varying word order variations of processing demands are revealed by event-related brain potentials. Journal of Memory and Language, 38, 150176.Google Scholar
Rossi, S., Gugler, M. F., Friederici, A. D., & Hahne, A. (2006). The impact of proficiency on syntactic second-language processing of German and Italian: Evidence from event-related potentials. Journal of Cognitive Neuroscience, 18, 20302048.Google Scholar
Rutherford, W. (1983). Language typology and language transfer. In Gass, S. & Selinker, L. (eds.), Language transfer in language learning, pp. 358370. Rowely, MA: Newbury House.Google Scholar
Sabourin, L., & Stowe, L. A. (2008). Second language processing: When are first and second languages processed similarly? Second Language Research, 24, 397430. doi:10.1177/0267658308090186Google Scholar
Salameh, E.-K., Håkansson, G., & Nettelbladt, U. (1996). The acquisition of Swedish as a second language in a group of Arabic-speaking pre-school children: word order patterns and phrasal morphology. Logopedics Phoniatrics Vocology, 21, 163170.Google Scholar
Sayehli, S. (2013). Developmental perspectives on transfer in third language acquisition. (Doctoral thesis), Lund University, Lund.Google Scholar
Schlesewsky, M., Bornkessel, I., & Frisch, S. (2003). The neurophysiological basis of word order variations in German. Brain and Language, 86, 116128. doi:10.1016/s0093-934x(02)00540-0Google Scholar
Schriefers, H., Friederici, A. D., & Kuhn, K. (1995). The processing of locally ambiguous relative clauses in German. Journal of Memory and Language, 34, 499520. doi:https://doi.org/10.1006/jmla.1995.1023Google Scholar
Schwartz, A. E., & Stiefel, L. (2006). Is there a nativity gap? New evidence on the academic performance of immigrant students. Education Finance and Policy, 1, 1749.Google Scholar
Schwartz, B. D., & Sprouse, R. A. (1996). L2 cognitive states and the Full Transfer/Full Access model. Second Language Research, 12, 4072. doi:10.1177/026765839601200103Google Scholar
Spivey, M. J., Anderson, S. E., & Farmer, T. A. (2013). Putting syntax in context. In van Gompel, R. P. G. (ed.), Sentence processing, pp. 115135. London/New York: Psychology Press.Google Scholar
Steinhauer, K., & Drury, J. E. (2012). On the early left-anterior negativity (ELAN) in syntax studies. Brain & Language, 120, 135162.Google Scholar
Steinhauer, K., Drury, J. E., Portner, P., Walenski, M., & Ullman, M. T. (2010). Syntax, concepts, and logic in the temporal dynamics of language comprehension: Evidence from event-related potentials. Neuropsychologia, 48, 15251542. doi:10.1016/j.neuropsychologia.2010.01.013Google Scholar
Steinhauer, K., White, E. J., & Drury, J. E. (2009). Temporal dynamics of late second language acquisition: Evidence from event-related brain potentials. Second Language Research, 25, 1341.Google Scholar
Swedex. (2012). Swedish Examinations.Google Scholar
Tokowicz, N., & MacWhinney, B. (2005). Implicit and explicit measures of sensitivity to violations in second language grammar: an event-related potential investigation. Studies in Second Language Acquisition, 27, 173204.Google Scholar
Tolentino, L. C., & Tokowicz, N. (2011). Across languages, space, and time: A review of the role of cross-language similarity in L2 (morpho)syntactic processing as revealed by fMRI and ERP methods. Studies in Second Language Acquisition, 33, 91125. doi:10.1017/s0272263110000549Google Scholar
van Hell, J. G., & Tokowicz, N. (2010). Event-related brain potentials and second language learning: syntactic processing in late L2 learners at different L2 proficiency levels. Second Language Research, 26, 4374.Google Scholar
van Kemenade, A., & Westergaard, M. (2012). Syntax and information structure. In Meurman-Solin, A., López-Couso, M. J., & Los, B. (eds.), Information structure and syntactic change in the history of English, pp. 87118. Oxford: Oxford University Press.Google Scholar
Van Petten, C., & Luka, B. J. (2012). Prediction during language comprehension: Benefits, costs, and ERP components. International Journal of Psychophysiology, 83, 176190. doi:https://doi.org/10.1016/j.ijpsycho.2011.09.015Google Scholar
Vos, S. H., Gunter, T. C., Schriefers, H., & Friederici, A. D. (2001). Syntactic parsing and working memory: The effects of syntactic complexity, reading span, and concurrent load. Language and Cognitive Processes, 16, 65103. doi:10.1080/01690960042000085Google Scholar
Weber-Fox, C., & Neville, H. J. (1996). Maturational constraints on functional specializations for language processing: ERP and behavioral evidence in bilingual speakers. Journal of Cognitive Neuroscience, 8, 231256.Google Scholar
Weber-Fox, C., & Neville, H. J. (2001). Sensitive periods differentiate processing of open- and closed-class words: An ERP study of bilinguals. Journal of Speech, Language, & Hearing Research, 44, 13381353Google Scholar
Westman, M. (1974). Bruksprosa. Lund: Liber läromedel - Gleerup.Google Scholar
Weyerts, H., Penke, M., Münte, T., Heinze, H.-J., & Clahsen, H. (2002). Word order in sentence processing: an experimental study of verb placement in German. Journal of Psycholinguistic Research, 31, 211268.Google Scholar
Wickens, T. D. (2002). Elementary signal detection theory. Oxford: Oxford University Press.Google Scholar
Wiese, H. (2009). Grammatical innovation in multiethnic urban Europe: new linguistic practices among adolescents. Lingua, 119, 782806. doi:https://doi.org/10.1016/j.lingua.2008.11.002Google Scholar
Wlotko, E. W., Lee, C.-L., & Federmeier, K. D. (2010). Language of the aging brain: Event-related potential studies of comprehension in older adults. Language and Linguistics Compass, 4 (8), 623638. doi:10.1111/j.1749-818X.2010.00224.xGoogle Scholar
Yamada, Y., & Neville, H. J. (2007). An ERP study of syntactic processing in English and nonsense sentences. Brain Research, 1130, 167180.Google Scholar
Yamashita, H. (1997). The effects of word-order and case marking information on the processing of Japanese. Journal of Psycholinguistic Research, 26, 163188. doi:10.1023/A:1025009615473Google Scholar
Zawiszewski, A., Gutiérrez, E. V. A., Fernández, B., & Laka, I. (2011). Language distance and non-native syntactic processing: Evidence from event-related potentials. Bilingualism: Language and Cognition, 14, 400411. doi:10.1017/S1366728910000350Google Scholar
Zobl, H. (1982). A direction for contrastive analysis: the comparative study of developmental sequences. TESOL Quarterly, 16, 169183.Google Scholar
Zobl, H. (1986). Word order typology, lexical government, and the prediction of multiple, graded effects in L2 word order Language Learning, 36, 159183. doi:10.1111/j.1467-1770.1986.tb00377.xGoogle Scholar
Supplementary material: File

Andersson et al. supplementary material

Appendix

Download Andersson et al. supplementary material(File)
File 28.4 KB
Supplementary material: PDF

Andersson et al. supplementary material

Tables S1-S4

Download Andersson et al. supplementary material(PDF)
PDF 342.7 KB