Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-11T10:12:50.733Z Has data issue: false hasContentIssue false

Learning the lexical aspects of a second language at different proficiencies: A neural computational study

Published online by Cambridge University Press:  16 January 2012

CRISTIANO CUPPINI*
Affiliation:
Department of Electronics, Computer Sciences and Systems, University of Bologna, Italy
ELISA MAGOSSO
Affiliation:
Department of Electronics, Computer Sciences and Systems, University of Bologna, Italy
MAURO URSINO
Affiliation:
Department of Electronics, Computer Sciences and Systems, University of Bologna, Italy
*
Address for correspondence: Cristiano Cuppini, DEIS, University of Bologna, viale Risorgimento, 2 40136 Bologna, Italycristiano.cuppini@unibo.it

Abstract

We present an original model designed to study how a second language (L2) is acquired in bilinguals at different proficiencies starting from an existing L1. The model assumes that the conceptual and lexical aspects of languages are stored separately: conceptual aspects in distinct topologically organized Feature Areas, and lexical aspects in a single Lexical Network. Lexical and semantic aspects are then linked together during Hebbian learning phases by presenting L2 lexical items and their L1 translation equivalents. The model hypothesizes the existence of a competitive mechanism to solve conflicts and simulate language switching tasks. Results demonstrate that, at the beginning of training, an L2 lexicon must parasitize its L1 equivalent to access its conceptual meaning. At intermediate proficiency, L2 items may evoke their semantics independently of L1, but with a high risk of interference. At higher proficiency, the L2 representation becomes progressively similar to the L1 representation, according to Green's (2003) convergence hypothesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica, 128 (3), 466478.CrossRefGoogle ScholarPubMed
Abutalebi, J., & Green, D. W. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20 (3), 242275.Google Scholar
Abutalebi, J., Miozzo, A., & Cappa, S. F. (2000). Do subcortical structures control ‘language selection’ in polyglots? Evidence from pathological language mixing. Neurocase: The Neural Basis of Cognition, 6 (1), 5156.Google Scholar
Abutalebi, J., Rosa, P. A. D., Tettamanti, M., Green, D. W., & Cappa, S. F. (2009). Bilingual aphasia and language control: A follow-up fMRI and intrinsic connectivity study. Brain and Language, 109 (2–3), 141156.Google Scholar
Abutalebi, J., Tettamanti, M., & Perani, D. (2009). The bilingual brain: Linguistic and non-linguistic skills. Brain and Language, 109 (2–3), 5154.CrossRefGoogle ScholarPubMed
Bertrand, O., & Tallon-Baudry, C. (2000). Oscillatory gamma activity in humans: A possible role for object representation. International Journal of Psychophysiology, 38 (3), 211223.CrossRefGoogle ScholarPubMed
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108 (3), 624652.Google Scholar
Briellmann, R. S., Saling, M. M., Connell, A. B., Waites, A. B., Abbott, D. F., & Jackson, G. D. (2004). A high-field functional MRI study of quadri-lingual subjects. Brain and Language, 89 (3), 531542.CrossRefGoogle ScholarPubMed
Caramazza, A., & Brones, I. (1980). Semantic classification by bilinguals. Canadian Journal of Psychology, 34 (1), 7781.CrossRefGoogle Scholar
Chen, H. C., & Leung, Y. S. (1989). Patterns of lexical processing in a nonnative language. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15 (2), 316325.Google Scholar
Chen, H. C., & Ng, N. L. (1989). Semantic facilitation and translation priming effects in Chinese–English bilinguals. Memory and Cognition, 17 (4), 454462.Google Scholar
Christoffels, I. K., Firk, C., & Schiller, N. O. (2007). Bilingual language control: An event-related brain potential study. Brain Research, 1147, 192208.CrossRefGoogle ScholarPubMed
Costa, A., Miozzo, M., & Caramazza, A. (1999). Lexical selection in bilinguals: Do words in the bilingual's two lexicons compete for selection? Journal of Memory and Language, 41 (3), 365397.Google Scholar
Cuppini, C., Magosso, E., & Ursino, M. (2009). A neural network model of semantic memory linking feature-based object representation and words. Biosystems, 96 (3), 195205.Google Scholar
Cuppini, C., Magosso, E., & Ursino, M. (2010). The representation of objects in the brain, and its link with semantic memory and language: A conceptual theory with the support of a neurocomputational model. In Perusich, K. (eds.), Cognitive maps, pp. 101120. Vukovar, Croatia: Intech.Google Scholar
Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press.Google Scholar
De Bleser, R., Dupont, P., Postler, J., Bormans, G., Speelman, D., & Mortelmans, L. (2004). The organisation of the bilingual lexicon: A PET study. Journal of Neurolinguistics, 16 (4–5), 439456.Google Scholar
de Groot, A. M. B. (1992). Determinants of word translation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18 (5), 10011018.Google Scholar
Dijkstra, A., & van Heuven, W. J. B. (1998). The BIA model and bilingual word recognition. In Grainger, J. & Jacobs, A. M. (eds.), Localist connectionist approaches to human cognition, pp. 189225. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Dijkstra, A., & van Heuven, W. J. B. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition, 5 (3), 175197.Google Scholar
Dimitropoulou, M., Duñabeitia, J. A., & Carreiras, M. (2011). Masked translation priming effects with low proficient bilinguals. Memory and Cognition, 39 (2), 260275.Google Scholar
Dufour, R., & Kroll, J. F. (1995). Matching words to concepts in two languages: A test of the concept mediation model of bilingual representation. Memory and Cognition, 23 (2), 166180.CrossRefGoogle ScholarPubMed
Duñabeitia, J. A., Perea, M., & Carreiras, M. (2010). Masked Translation Priming Effects With highly proficient simultaneous bilinguals. Experimental Psychology, 57 (2), 98107.Google Scholar
Finkbeiner, M., Almeida, J., Janssen, N., & Caramazza, A. (2006). Lexical selection in bilingual speech production does not involve language suppression. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32 (5), 10751089.Google Scholar
Francis, W. S. (1999). Cognitive integration of language and memory in bilinguals: Semantic representation. Psychological Bulletin, 125 (2), 193222.CrossRefGoogle ScholarPubMed
French, R. M. (1998). A simple recurrent network model of bilingual memory. Proceedings of the 20th Annual Conference of the Cognitive Science Society, pp. 368373. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
French, R. M., & Jacquet, M. (2004). Understanding bilingual memory: Models and data. Trends in Cognitive Sciences, 8 (2), 8793.Google Scholar
Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19 (4), 12731302.Google Scholar
Grasemann, U., Sandberg, C., Kiran, S., & Miikkulainen, R. (2010). Rehabilitation and cross-language transfer in bilingual aphasia: Towards a computational model. BMC Neuroscience, 11 (Suppl. 1), 98.Google Scholar
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1 (2), 6781.Google Scholar
Green, D. W. (2003). The neural basis of the lexicon and the grammar in L2 acquisition. In van Hout, R., Hulk, A., Kuiken, F. & Towell, R. (eds.), The interface between syntax and the lexicon in second language acquisition, pp. 197218. Amsterdam: John Benjamins.Google Scholar
Grosjean, F. (1988). Exploring the recognition of guest words in bilingual speech. Language and Cognitive Processes, 3 (3), 233274.Google Scholar
Grosjean, F. (2008). Studying bilinguals. Oxford: Oxford University Press.CrossRefGoogle Scholar
Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences, 81 (10), 30883092.Google Scholar
Hopfield, J. J., & Brody, C. D. (2001). What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proceedings of the National Academy of Sciences, 98 (3), 12821287.Google Scholar
Keatley, C. W., Spinks, J. A., & de Gelder, B. (1994). Asymmetrical cross-language priming effects. Memory and Cognition, 22 (1), 7084.Google Scholar
Kirsner, K., Smith, M. C., Lockhart, R. S., King, M. L., & Jain, M. (1984). The bilingual lexicon: Language-specific units in an integrated network. Journal of Verbal Learning and Verbal Behavior, 23 (4), 519539.CrossRefGoogle Scholar
Kroll, J. F., Bobb, S. C., & Wodniecka, Z. (2006). Language selectivity is the exception, not the rule: Arguments against a fixed locus of language selection in bilingual speech. Bilingualism: Language and Cognition, 9 (2), 119135.Google Scholar
Kroll, J. F. & Stewart, E. (1994). Category interference in translation and picture naming: Evidence for asymmetric connections between bilingual memory representations. Journal of Memory and Language, 33 (2), 149174.Google Scholar
Li, P., & Farkas, I. (2002). A self-organizing connectionist model of bilingual processing. In Altarriba, R. H. J. (eds.), Bilingual sentence processing, pp. 5985. Amsterdam: Elsevier.CrossRefGoogle Scholar
Li, P., Farkas, I., & MacWhinney, B. (2004). Early lexical development in a self-organizing neural network. Neural Networks, 17 (8–9), 13451362.Google Scholar
Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275 (5297), 213215.Google Scholar
McClelland, J. L. & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception. Part 1: An account of basic findings. Psychological Review, 88 (5), 375405.CrossRefGoogle Scholar
Miikkulainen, R. (1993). Subsymbolic natural language processing: An integrated model of scripts, lexicon, and memory. Cambridge, MA: MIT Press.Google Scholar
Miikkulainen, R. (1997). Dyslexic and category-specific aphasic impairments in a self-organizing feature map model of the lexicon. Brain and Language, 59 (2), 334366.Google Scholar
Miikkulainen, R., & Kiran, S. (2009). Modeling the bilingual lexicon of an individual subject. Lecture Notes in Computer Science, 5629, 191199.CrossRefGoogle Scholar
Paradis, M. (1984). Aphasie et traduction [Aphasia and translation]. Meta, Translators’ Journal, 29 (1), 5767.Google Scholar
Perani, D., & Abutalebi, J. (2005). The neural basis of first and second language processing. Current Opinion in Neurobiology, 15 (2), 202206.Google Scholar
Potter, M. C., So, K.-F., Von Eckardt, B., & Feldman, L. (1984). Lexical and conceptual representation in beginning and proficient bilinguals. Journal of Verbal Learning and Verbal Behavior, 23 (1), 2338.Google Scholar
Regier, T. (2005). The emergence of words: Attentional learning in form and meaning. Cognitive Science, 29 (6), 819865.Google Scholar
Rodriguez-Fornells, A., De Diego Balaguer, R., & Münte, T. F. (2006). Executive control in bilingual language processing. Language Learning, 56 (Suppl. 1), 133190.CrossRefGoogle Scholar
Rolls, E. T., & Treves, A. (1998). Neural networks and brain function. Oxford: Oxford University Press.Google Scholar
Tanaka, K. (2003). Columns for complex visual object features in the inferotemporal cortex: Clustering of cells with similar but slightly different stimulus selectivity. Cerebral Cortex, 13 (1), 9099.Google Scholar
Thomas, M. S. C. (1997). Distributed representations and the bilingual lexicon: One store or two? In Bullinaria, J., Glasspool, D. & Houghton, G. (eds.), Proceedings of the Fourth Annual Neural Computation and Psychology Workshop, pp. 240253. Berlin: Springer-Verlag.Google Scholar
Thomas, M. S. C., & van Heuven, W. J. B. (2005). Computational models of bilingual comprehension. In Kroll, J. F. & de Groot, A. M. B. (eds.), Handbook of bilingualism: Psycholinguistic approaches, pp. 202225. New York: Oxford University Press.Google Scholar
Trappenberg, T. P. (2002). Fundamentals of computational neuroscience. New York: Oxford University Press.Google Scholar
Ursino, M., Cuppini, C., & Magosso, E. (2010). A semantic model to study neural organization of language in bilingualism. Computational Intelligence and Neuroscience, 2010, 110.Google Scholar
Ursino, M., La Cara, G.-E., & Sarti, A. (2003). Binding and segmentation of multiple objects through neural oscillators inhibited by contour information. Biological Cybernetics, 89 (1), 5670.Google Scholar
Ursino, M., Magosso, E., & Cuppini, C. (2009). Recognition of abstract objects via neural oscillators: Interaction among topological organization, associative memory and gamma band synchronization. IEEE Transactions on Neural Networks, 20 (2), 316335.Google Scholar
Vigliocco, G., Vinson, D. P., Lewis, W., & Garrett, M. F. (2004). Representing the meaning of objects and action words: The featural and unitary semantic space hypothesis. Cognitive Psychology, 48 (4), 422488.Google Scholar
Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12 (1), 124.Google Scholar
Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111 (4), 931959.Google Scholar
Zhao, X., & Li, P. (2010). Bilingual lexical interactions in an unsupervised neural network model. International Journal of Bilingual Education and Bilingualism, 13 (5), 505524.CrossRefGoogle Scholar
Zhao, X., & Li, P. (2007). Bilingual lexical representation in a selforganizing neural network. Proceedings of the 29th Annual Meeting of the Cognitive Science Society, pp. 755760. Austin, TX: Cognitive Science Society.Google Scholar
Supplementary material: PDF

Cuppini Supplementary Material

Cuppini Supplementary Material

Download Cuppini Supplementary Material(PDF)
PDF 682.1 KB