Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T06:55:52.194Z Has data issue: false hasContentIssue false

Learning two languages from birth shapes pre-attentive processing of vowel categories: Electrophysiological correlates of vowel discrimination in monolinguals and simultaneous bilinguals*

Published online by Cambridge University Press:  05 December 2013

MONIKA MOLNAR*
Affiliation:
Basque Center on Cognition, Brain, and Language (BCBL), Spain McGill University, School of Communication Sciences and Disorders, Canada
LINDA POLKA
Affiliation:
McGill University, School of Communication Sciences and Disorders, Canada & Centre for Research on Brain, Language and Music (CRBLM), Canada
SHARI BAUM
Affiliation:
McGill University, School of Communication Sciences and Disorders, Canada & Centre for Research on Brain, Language and Music (CRBLM), Canada
KARSTEN STEINHAUER
Affiliation:
McGill University, School of Communication Sciences and Disorders, Canada & Centre for Research on Brain, Language and Music (CRBLM), Canada
*
Address for correspondence: Monika Molnar, Basque Center on Cognition, Brain and Language (BCBL), Donostia 20009, Spainm.molnar@bcbl.eu

Abstract

Using event-related brain potentials (ERPs), we measured pre-attentive processing involved in native vowel perception as reflected by the mismatch negativity (MMN) in monolingual and simultaneous bilingual (SB) users of Canadian English and Canadian French in response to various pairings of four vowels: English /u/, French /u/, French /y/, and a control /y/. The monolingual listeners exhibited a discrimination pattern that was shaped by their native language experience. The SB listeners, on the other hand, exhibited a MMN pattern that was distinct from both monolingual listener groups, suggesting that the SB pre-attentive system is tuned to access sub-phonemic detail with respect to both input languages, including detail that is not readily accessed by either of their monolingual peers. Additionally, simultaneous bilinguals exhibited sensitivity to language context generated by the standard vowel in the MMN paradigm. The automatic access to fine phonetic detail may aid SB listeners to rapidly adjust their perception to the variable listening conditions that they frequently encounter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The authors thank Solange Akochi-Shaye and Masha Westerlund for their help in EEG data acquisition, and two anonymous reviewers for their comments on a previous version of the manuscript. This study was partially supported by a Canadian Institutes of Health Research (CIHR; MOP -11290) grant to S. Baum, a Natural Sciences and Engineering Research Council of Canada (NSERC) grant to L. Polka, and by grants from the CIHR (MOP -74575), the NSERC (RGPGP 312835/402678–11), and the Canada Foundation for Innovation/Canada Research Chair Program (CFI/CRC; # 201876) awarded to K. Steinhauer, in whose Neurocognition of Language Lab at McGill this research was carried out.

References

Aaltonen, O., Niemi, P., Nyrke, T., & Tuhkanen, M. (1987). Event-related brain potentials and the perception of a phonetic continuum. Biological Psychology, 24, 197207.Google Scholar
Alho, K., Woods, D., Algazi, A., & Näätänen, R. (1992). Intermodal selective attention. II: Effects of attentional load on processing of auditory and visual stimuli in central spacestar open. Electroencephalography and Clinical Neurophysiology, 5, 356368.CrossRefGoogle Scholar
Best, C. T. (1995). A direct realist perspective on cross-language speech perception. In Strange (ed.), pp. 171206.Google Scholar
Bohn, O.-S., & Flege, E. J. (1993). Perceptual switching in Spanish/English bilinguals. Journal of Phonetics, 21, 267290.CrossRefGoogle Scholar
Bongaerts, T., Mennen, S., & Slik, F. van der (2000). Authenticity of pronunciation in naturalistic second language acquisition: The case of very advanced late learners of Dutch as a second language. Studia Linguistica, 54, 298308.Google Scholar
Caramazza, A., Yeni-Komshian, G. H., Zurif, E. B., & Carbone, E. (1973). The acquisition of new phonological contrast: The case of stop consonants in French–English bilinguals. Journal of Acoustical Society of America, 54, 421428.CrossRefGoogle ScholarPubMed
Carney, A., Widin, G., & Viemeister, N. (1977). Noncategorical perception of stop consonants differing in VOT. Journal of Acoustical Society of America, 62, 961970.Google Scholar
Čeponienė, R., Cheour, M., & Näätänen, R. (1998). Interstimulus interval and auditory event-related potentials in children: Evidence for multiple generators. Electroencephalography and Clinical Neurophysiology, 108, 345354.CrossRefGoogle ScholarPubMed
Cheour, M., Korpilahti, P., & Martynova, O. (2001). Mismatch negativity (MMN) and late discriminative negativity (LDN) in investigating speech perception and learning in children and infants. Audiology and Neurotology, 6, 211.CrossRefGoogle ScholarPubMed
Czigler, I., Csibra, G., & Csontos, A. (1992). Age and inter-stimulus interval effects on event-related potentials to frequent and infrequent auditory stimuli. Biological Psychology, 33, 195206.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G. (1997). Electrophysiological correlates of categorical phoneme perception in adults. Neuroreport, 8, 919–924.Google Scholar
Elman, J. L., Diehl, R. L., & Buchwald, S. E. (1977). Perceptual switching in bilinguals. The Journal of the acoustical Society of America, 62, 971.CrossRefGoogle Scholar
Flege, J. E. (1995). Second language speech learning: Theory, findings, and problems. In Strange (ed.), pp. 233272.Google Scholar
Flege, J. E., Schirru, C., & MacKay, I. R. A. (2003). Interaction between the native and second language phonetic subsystems. Speech Communication, 40, 467491.CrossRefGoogle Scholar
Flege, J. E., Yeni-Komshian, G. H., & Liu, S. (1999). Age constraints on second-language acquisition. Journal of Memory and Language, 41, 78104.CrossRefGoogle Scholar
Garcia-Sierra, A., Ramirez-Esparza, N., Silva-Pereyra, J., Siard, J., & Champlin, C. A. (2012). Assessing the double phonemic representation in bilingual speakers of Spanish and English: An electrophysiological study. Brain and Language, 121, 194205.Google Scholar
Grosjean, F. (1998). Studying bilinguals: Methodological and conceptual issues. Bilingualism: Language and Cognition, 1, 131149.CrossRefGoogle Scholar
Guion, S. G. (2003). The vowel systems of Quichua–Spanish bilinguals: Age of acquisition effects on the mutual influence of the first and second languages. Phonetica, 60, 98128.CrossRefGoogle ScholarPubMed
Kim, K. H., Relkin, N. R., Lee, K. M., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388 (6638), 171174.Google Scholar
Klein, D., Zatorre, R. J., Milner, B., Meyer, E., & Evans, A. C. (1995). The neural substrates of bilingual language processing: Evidence from positron emission tomography. In Paradis, M. (ed.), Aspects of bilingual aphasia, pp. 2336. Oxford: Pergamon.Google Scholar
Korpilahti, P., Salmela, S., Lang, H., Porn, B., & Crause, C. (1997). Event-related potentials elicited by complex tones, words and pseudo-words in normal and language impaired children. Electroencephalography and Clinical Neurophysiology, 103, 64.Google Scholar
Kuhl, P. (1991). Human adults and human infants show a “perceptual magnet effect” for the prototypes of speech categories, monkeys do not. Perception & Psychophysics, 50, 93107.CrossRefGoogle ScholarPubMed
Lipski, S. C., & Mathiak, K. (2008). Auditory mismatch negativity for speech sound contrasts is modulated by language context. NeuroReport, 19, 10791083.Google Scholar
Mack, M. (1989). Consonant and vowel perception and production: Early English–French bilinguals and English monolinguals. Perception & Psychophysics, 46, 187200.CrossRefGoogle ScholarPubMed
MacKay, I. R. A., Meador, D., & Flege, E. (2001). The identification of English consonants by native speakers of Italian. Phonetica, 58, 103125.CrossRefGoogle ScholarPubMed
MacLeod, A. A., & Stoel-Gammon, C. (2005). Are bilinguals different? What VOT tells us about simultaneous bilinguals. Journal of Multilingual Communication Disorders, 3, 118127.CrossRefGoogle Scholar
Marian, V., Blumenfeld, H., & Kaushanskaya, M. (2007). The language experience and proficiency questionnaire (LEAP–Q): Assessing language profiles in bilinguals and multilinguals. Journal of Speech, Language, and Hearing Research, 50, 940967.Google Scholar
Molnar, M., Polka, L., Baum, S., & Steinhauer, K. (2010). Vowel perception: How simulatnous bilinguals do it. Presented at Neurobilingualism Conference, Donostia, Spain, September 30 – October 1.Google Scholar
Näätänen, R. (1987). Event-related brain potentials in research of cognitive processes: A classification of components. In E. Meer & J. Hoffman (eds.), Knowledge aided information processing, pp. 241273. Amsterdam: Elsevier.Google Scholar
Näätänen, R., Jacobsen, T., & Winkler, I. (2005). Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 42, 2532.CrossRefGoogle ScholarPubMed
Näätänen, R., Lehtokoski, A., Lennest, M., Luuki, A., Alliki, J., Sinkkonen, J., & Alho, K. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385, 432434.CrossRefGoogle ScholarPubMed
Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neuropsychology, 118, 25442590.Google Scholar
Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic respond o sound: A review and an analysis of the component structure. Psychophysiology, 24, 375425.Google Scholar
Pallier, C., Bosch, L., & Sebastián-Gallés, N. (1997). A limit on behavioral plasticity in speech perception. Cognition, 64, B9–B17.CrossRefGoogle ScholarPubMed
Peltola, M. S., Kujala, T., Tuomainen, J., Ek, M., Aaltonen, O., & Näätänen, R. (2003). Native and foreign vowel discrimination as indexed by the mismatch negativity (MMN) response. Neuroscience Letters, 352, 2528.Google Scholar
Peltola, M. S., Tamminen, H., Toivonen, H., Kujala, T., & Näätänen, R. (2012). Different kinds of bilinguals – different kinds of brains: The neural organisation of two languages in one brain. Brain and Language, 121, 261266.Google Scholar
Perani, D., Paulesu, E., Sebastián-Gallés, N., Dupoux, E., Dehaene, S., Bettinardi, V., Cappa, S. F., Fazio, F., & Mehler, J. (1998). The bilingual brain: Proficiency and age of acquisition of the second language. Brain, 121, 18411852.CrossRefGoogle ScholarPubMed
Piske, T., Flege, E., MacKay, I. R. A., & Meador, D. (2002). The production of English vowels by fluent early and late Italian–English bilinguals. Phonetica, 59, 4971.CrossRefGoogle ScholarPubMed
Pisoni, D. B. (1973). Auditory and phonetic memory codes in the discrimination of consonants and vowels. Perception & Psychophysics, 13, 253260.CrossRefGoogle ScholarPubMed
Polka, L., & Bohn, O.-S. (2003). Asymmetries in vowel perception. Speech Communication, 41, 221231.Google Scholar
Polka, L., & Bohn, O-S. (2011) Natural Referent Vowel (NRV) framework: An emerging view of early phonetic development. Journal of Phonetics, 39, 467478.CrossRefGoogle Scholar
Polka, L., Molnar, M., Baum, S., Ménard, L., & Steinhauer, K. (2009). Asymmetries in the MMN response to vowels by French, English, and bilingual adults: Evidence for a language-universal bias. Presented at the Acoustical Society of America Meeting, Portland, Oregon, USA.Google Scholar
Rivera-Gaxiola, M., Csibra, G., Johnson, M., & Karmiloff-Smith, A. (2000). Electrophysiological correlates of cross-linguistic speech perception in native English speakers. Behavioral Brain Research, 111, 1323.CrossRefGoogle ScholarPubMed
Sams, M., Paavilainen, P., Alho, K., & Näätänen, R. (1985). Auditory frequency discrimination and event-related potentials. Electroencephalography and Clinical Neurophysiology, 62, 437448.Google Scholar
Sebastián-Gallés, N., Echeverría, S., & Bosch, L. (2005). The influence of initial exposure on lexical representation: Comparing early and simultaneous bilinguals. Journal of Memory and Language, 52, 240255.CrossRefGoogle Scholar
Shafer, V. L., Schwartz, R. G., & Kurtzberg, D. (2004). Language-specific memory traces of consonants in the brain. Cognitive Brain Research, 18, 242254.Google Scholar
Sharma, A., & Dorman, M. F. (1999). Cortical auditory evoked potential correlates of categorical perception of voice-onset time. The Journal of the Acoustical Society of America, 106, 1078.Google Scholar
Sharma, A., & Dorman, M. F. (2000). Neurophysiologic correlates of cross-language phonetic perception. Journal of Acoustical Society of America, 107, 26972703.Google Scholar
Steinhauer, K., & Drury, J. (2012). On the early left-anterior negativity (ELAN) in syntax studies. Brain and Language, 120, 135162.Google Scholar
Strange, W. (ed.) (1995). Speech perception and linguistic experience: Issues in cross-language research. Baltimore, MD: York Press.Google Scholar
Sundara, M. (2005). Acoustic-phonetics of coronal stops: A cross-language study of Canadian English and Canadian French. Journal of the Acoustical Society of America, 118, 10261037.CrossRefGoogle Scholar
Sundara, M., & Polka, L. (2008). Discrimination of coronal stops by bilingual adults: The timing and nature of language interaction. Cognition, 106, 234258.CrossRefGoogle ScholarPubMed
Sundara, M., Polka, L., & Baum, S. (2006a). Production of coronal stops by simultaneous bilingual adults. Bilingualism: Language and Cognition, 9, 97114.CrossRefGoogle Scholar
Sundara, M., Polka, L., & Genesee, F. (2006b). Language experience facilitates discrimination of /dD/ in monolingual and bilingual acquisition of English. Cognition, 100, 369388.CrossRefGoogle Scholar
Sundara, M., Polka, L., & Molnar, M. (2008). Development of coronal stop perception: Bilingual infants keep pace with their monolingual peers. Cognition, 108, 232242.CrossRefGoogle ScholarPubMed
Trejo, L., Ryan-Jones, D., & Kramer, A. (1995). Attentional modulation of the mismatch negativity elicited by frequency differences between binaurally presented tone bursts. Psychophysiology, 32, 319328.Google Scholar
Werker, J., & Logan, J. (1985). Cross-language evidence for three factors in speech perception. Perception & Psychophysics, 37, 3544.CrossRefGoogle ScholarPubMed
Winkler, I., Kujala, T., Paavo, A., & Näätänen, R. (2003). Language context and phonetic perception. Cognitive Brain Research, 17, 833844.Google Scholar
Winkler, I., Kujala, T., Tiitinen, H., Sivonen, P., Alku, P., Lehtokoski, A., Czigler, I., Csépe, V., Ilmoniemi, R. J., & Näätänen, R. (1999). Brain responses reveal the learning of foreign language phonemes. Psychophysiology, 36, 638642.CrossRefGoogle ScholarPubMed
Yamada, R. A. (1995). Age and acquisition of second language speech sounds: Perception of American English /r/ and /l/ by native speakers of Japanese. In Strange (ed.), pp. 305--320.Google Scholar
Yamada, T., Yamada, R. A., & Strange, W. (1995). Perception of English vowels and consonants by Japanese learners of English. Presented at the Proceeding of the Acoustical Society of Japan.Google Scholar