Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T22:33:48.796Z Has data issue: false hasContentIssue false

Multilink: a computational model for bilingual word recognition and word translation

Published online by Cambridge University Press:  06 July 2018

TON DIJKSTRA*
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
ALEXANDER WAHL
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
FRANKA BUYTENHUIJS
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
NINO VAN HALEM
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
ZINA AL-JIBOURI
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
MARCEL DE KORTE
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
STEVEN REKKÉ
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
*
Address for correspondence: Ton Dijkstra, Donders Institute for Brain, Cognition, and Behaviour, Donders Centre for Cognition, Montessorilaan 3, 6525 HR Nijmegen, The Netherlandst.dijkstra@donders.ru.nl

Abstract

The computational BIA+ model (Dijkstra & Van Heuven, 2002) has provided a useful account for bilingual word recognition, while the verbal (pre-quantitative) RHM (Kroll & Stewart, 1994) has often served as a reference framework for bilingual word production and translation. According to Brysbaert and Duyck (2010), a strong need is felt for a unified implemented account of bilingual word comprehension, lexical-semantic processing, and word production. With this goal in mind, we built a localist-connectionist model, called Multilink, which integrates basic assumptions of both BIA+ and RHM. It simulates the recognition and production of cognates (form-similar translation equivalents) and non-cognates of different lengths and frequencies in tasks like monolingual and bilingual lexical decision, word naming, and word translation production. It also considers effects of lexical similarity, cognate status, relative L2-proficiency, and translation direction. Model-to-model comparisons show that Multilink provides higher correlations with empirical data than both IA and BIA+ models.

Type
Keynote Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

* The authors thank Sybrine Bultena, Louis ten Bosch, Randi Goertz, and Eric Lormans for their comments on an earlier version of this paper.

References

Abutalebi, J., & Green, D. (2007). Bilingual language production: the neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242275.Google Scholar
Adelman, J. S., Johnson, R. L., McCormick, S. F., McKague, M., Kinoshita, S., Bowers, J. S., Perry, J. R., Lupker, S. J., Forster, K. I., Cortese, M. J., Scaltritti, M., Aschenbrenner, A. J., Coane, J. H., White, L., Yap, M. J., Davis, C., Kim, J., & Davis, C. J. (2014). A behavioral database for masked form priming. Behavior Research Methods, 46, 10521067.Google Scholar
Baayen, R. H., Milin, P., Filipovic Durdevic, D., Hendrix, P., & Marelli, M. (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. Psychological Review, 118, 438482.Google Scholar
Balota, D.A. (1994). Visual word recognition: The journey from features to meaning. In Gernsbacher, M.A. (Ed.), Handbook of Psycholinguistics (pp. 303358). San Diego: Academic Press.Google Scholar
Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., Neely, J.H., Nelson, D. L., Simpson, G. B., & Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39, 445459.Google Scholar
Bloem, I., & La Heij, W. (2003). Semantic facilitation and semantic interference in word translation: Implications for model of lexical access in language production. Journal of Memory and Language, 48, 468488.Google Scholar
Brysbaert, M., & Duijck, W. (2010). Is it time to leave behind the Revised Hierarchical Model of bilingual language processing after fifteen years of service? Bilingualism: Language and Cognition, 13, 359371.Google Scholar
Brysbaert, M., New, B., & Keuleers, E. (2012). Adding Part-of-Speech information to the SUBTLEX-US word frequencies. Behavior Research Methods. doi: 10.3758/s13428-012-0190-4Google Scholar
Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016). The impact of word prevalence on lexical decision times: Evidence from the Dutch Lexicon Project 2. Journal of Experimental Psychology: Human Perception and Performance, 42, 441458.Google Scholar
Brysbaert, M., Verreijt, N., & Duijck, W. (2010). Models as hypothesis generators and models as roadmaps. Bilingualism: Language and Cognition, 13, 383384.Google Scholar
Christoffels, I. K., De Groot, A. M. B., & Kroll, J.F. (2006). Memory and language skills in simultaneous interpreters: The role of expertise and language proficiency. Journal of Memory and Language, 54, 324345.Google Scholar
Christoffels, I. K., Ganuschchak, L., & Koester, D. (2013). Language conflict in translation: An ERP study of translation production. Journal of Cognitive Psychology, 25, 646664.Google Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A Dual Route Cascaded Model of visual word recognition and reading aloud. Psychological Review, 108, 204256.Google Scholar
Davis, C. J. (2003). Factors underlying masked priming effects in com- petitive network models of visual word recognition. In Kinoshita, S. & Lupker, S. J. (Eds.), Masked priming: The state of the art (pp. 121170), Hove, England: Psychology Press.Google Scholar
Davis, C. J., & Lupker, S. J. (2006). Masked inhibitory priming in English: Evidence for lexical inhibition. Journal of Experimental Psychology: Human Perception and Performance, 32, 668687.Google Scholar
De Groot, A. M. B. (2011). Language and cognition in bilinguals and multilinguals: An introduction. New York: Psychology Press.Google Scholar
De Groot, A.M.B., Borgwaldt, S., Bos, M., & Van den Eijnden, E. (2002). Lexical decision and word naming in bilinguals: Language effects and task effects. Journal of Memory and Language, 47, 91124.Google Scholar
De Groot, A.M.B., Dannenburg, L., & Van Hell, J.G. (1994). Forward and backward word translation by bilinguals. Journal of Memory and Language, 33, 600629.Google Scholar
Dijkstra, A. (2005). Word recognition and lexical access II: Connectionist approaches. In Cruse, D.A., Hundsnurscher, F., Job, M., & Lutzeier, P.R. (Eds.), Lexikologie vol. II – Lexicology vol. II (pp. 17221730). Berlin: Walter de Gruyter. (Article 218.)Google Scholar
Dijkstra, A., Haga, F., Bijsterveld, A., & Sprinkhuizen-Kuyper, I. (2011). Assessing mechanisms of inhibition in localist and distributed connectionist models by simulating L2 word acquisition. In Altarriba, J. & Isurin, L. (Eds.), Memory and Language: Theoretical and Applied Approaches to Bilingualism. John Benjamins.Google Scholar
Dijkstra, A., Miwa, K., Brummelhuis, B., Sappelli, M., & Baayen, H. (2010). How cross-language similarity affects cognate recognition. Journal of Memory and Language, 62, 284301.Google Scholar
Dijkstra, A., & Rekké, S. (2010). Towards a localist-connectionist model for word translation. The Mental Lexicon, 5 (3), 403422. Special issue on Methodological and analytic frontiers in lexical research, edited by G. Jarema, G. Libben, & Ch. Westbury.Google Scholar
Dijkstra, A., & Van Heuven, W.J.B. (1998). The BIA-model and bilingual word recognition. In Grainger, J. & Jacobs, A. (Eds.), Localist Connectionist Approaches to Human Cognition (pp. 189225). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Dijkstra, A., & Van Heuven, W.J.B. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition, 5, 175197.Google Scholar
Goertz, R., Wahl, A., & Dijkstra, A. (in preparation). Translating interlingual homographs: Empirical and simulation data. [working title]Google Scholar
Grainger, J. (2008). Cracking the orthographic code: An introduction. Language and Cognitive Processes, 23, 135.Google Scholar
Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103, 518565.Google Scholar
Grainger, J., Midgley, K., & Holcomb, P. J. (2010). Re-thinking the bilingual interactive-activation model from a developmental perspective (BIA-d). In Kail, M. & Hickmann, M. (Eds.), Language acquisition across linguistic and cognitive systems (pp. 267284). New York, NY: John Benjamins.Google Scholar
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1, 6781.Google Scholar
Heeringa, W. (2004). Measuring dialect pronunciation differences using Levenshtein distance. Ph.D. dissertation, University of Groningen.Google Scholar
Jacobs, A. M., & Grainger, J. (1994). Models of visual word recognition: Sampling the state of the art. Journal of Experimental Psychology: Human Perception and Performance, 20, 13111334.Google Scholar
Kessler, B. (2005). Phonetic comparison algorithms. Transactions of the Philological Society, 103, 243260.Google Scholar
Keuleers, E., Brysbaert, M., & New, B. (2010). SUBTLEX-NL: A new frequency measure for Dutch words based on film subtitles. Behavior Research Methods, 42, 643650.Google Scholar
Keuleers, E., Diependaele, K., & Brysbaert, M. (2010). Practice effects in large-scale visual word recognition studies: a lexical decision study on 14,000 dutch mono- and disyllabic words and nonwords. Frontiers in Language Sciences: Psychology, 1, 174.Google Scholar
Kroll, J. F., Michael, E., Tokowicz, N., & Dufour, R. (2002). The development of lexical fluency in a second language. Second Language Research, 18, 137171.Google Scholar
Kroll, J. F., & Stewart, E. (1994). Category interference in translation and picture naming: Evidence for asymmetric connections between bilingual memory representations. Journal of Memory and Language, 33, 149174.Google Scholar
Kroll, J. F., van Hell, J. G., Tokowicz, N., & Green, D. W. (2010). The Revised Hierarchical Model: A critical review and assessment. Bilingualism: Language and Cognition, 13, 373381.Google Scholar
Levenshtein, V.I. (1966). Binary codes capable of correcting deletions insertions and reversals. Cybernetics and Control Theory, 10, 707–10.Google Scholar
Lewy, N., & Grosjean, F. (2008). The Lewy and Grosjean BIMOLA model. In Grosjean, F. (ed.), Studying bilinguals, pp. 201210. Oxford: Oxford University Press.Google Scholar
Li, P., & Farkas, I. (2002). A self-organizing connectionist model of bilingual processing. In Heredia, R. R. & Altarriba, J. (eds.), Bilingual sentence processing, pp. 5985. Amsterdam: North-Holland.Google Scholar
Mandera, P., Keuleers, E., & Brysbaert, M. (2017). Explaining human performance in psycholinguistic tasks with models of semantic similarity based on prediction and counting: A review and empirical validation. Journal of Memory and Language, 92, 5778.Google Scholar
McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception, Part 1: An account of basic findings. Psychological Review, 88, 375405.Google Scholar
McClelland, J. L., & Rumelhart, D. E. (1988). Parallel distributed processing: Explorations in the microstructure of cognition: A handbook of models, programs, and excercises. Cambridge, MA: Bradford Books.Google Scholar
Meade, G., & Dijkstra, A. (2017). Mechanisms underlying word learning in second language acquisition. In Libben, M., Goral, M., & Libben, G. (eds.), Bilingualism: A Framework for Understanding the Mental Lexicon. John Benjamins (pp. 4971).Google Scholar
Mulder, K., Dijkstra, A., & Baayen, H. (2015). Cross-language activation of morphological relatives in cognates: The role of orthographic overlap and task-related processing. Frontiers in Human Neuroscience, 9, 16. DOI:10.3389/fnhum.2015.00016Google Scholar
Mulder, K., Dijkstra, A., Schreuder, R., & Baayen, R. H. (2014). Effects of primary and secondary morphological family size in monolingual and bilingual word processing. Journal of Memory and Language, 72, 5984. DOI: 10.1016/j.jml.2013.12.004Google Scholar
Mulder, K., Schreuder, R., & Dijkstra, A. (2013). Morphological family size effects in L1 and L2 processing: An electrophysiological study. Language and Cognitive Processes, 27, 10041035. DOI:10.1080/01690965.2012.733013Google Scholar
Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1998). The University of South Florida word association, rhyme, and word fragment norms. http://www.usf.edu/FreeAssociation/.Google Scholar
Paradis, M. (1981). Neurolinguistic organization of a bilingual's two languages. In Copeland, J. (Ed.), The seventh LACUS forum. Columbia: Hornbeam Press.Google Scholar
Pavlenko, A. (2009). Conceptual representation in the bilingual lexicon and second language vocabulary learning. In Pavlenko, A. (ed.), The bilingual mental lexicon: Interdisciplinary approaches (pp. 125160). Multilingual Matters, Buffalo, NY.Google Scholar
Pruijn, L., Peacock, J., & Dijkstra, A. (in preparation). Mechanisms of word translation production: Empirical and simulation data. [working title]Google Scholar
Roelofs, A. (2008). Attention to spoken word planning: chronometric and neuroimaging evidence. Language and Linguistics Compass, 2, 389405.Google Scholar
Roelofs, A., Dijkstra, A., & Gerakaki, S. (2013). Modeling of word translation: Activation flow from concepts to lexical items. Bilingualism: Language and Cognition, 16, 343353. doi:10.1017/S1366728912000612.Google Scholar
Roelofs, A., Piai, V., Garrido Rodriguez, G., & Chwilla, D. J. (2016). Electrophysiology of cross-language interference and facilitation in picture naming. Cortex, 116. doi: 10.1016/j.cortex.2015.12.003Google Scholar
Schepens, J., Dijkstra, A., & Grootjen, F. (2012). Distributions of cognates in Europe as based on Levenshtein distance. Bilingualism: Language and Cognition, 15, 157166. doi:10.1017/S1366728910000623.Google Scholar
Sholl, A., Sankaranarayanan, A., & Kroll, J.F. (1995). Transfer between picture naming and translation: A test of asymmetries in bilingual memory. Psychological Science, 6, 4549.Google Scholar
Shook, A., & Marian, V. (2012). The Bilingual Language Interaction Network for Comprehension of Speech. Bilingualism: Language and Cognition, 16: 304324.Google Scholar
Tokowicz, N., & Kroll, J.F. (2007). Number of meanings and concreteness: Consequences of ambiguity within and across languages. Language and Cognitive Processes, 22, 727779.Google Scholar
Van Heuven, W. J. B. (2015). jIAM: Interactive activation models in JavaScript. http://www.psychology.nottingham.ac.uk/staff/wvh/jiam/startjiam.htmlGoogle Scholar
Van Heuven, W. J. B., & Dijkstra, A. (2010). Language processing in the bilingual brain: fMRI and ERP support for the psycholinguistic models. Brain Research Reviews, 64, 104122.Google Scholar
Van Heuven, W.J.B., Dijkstra, A., & Grainger, J. (1998). Orthographic neighborhood effects in bilingual word recognition. Journal of Memory and Language, 39, 458483.Google Scholar
Vanlangendonck, F. (2012). Conflict in the bilingual brain: The case of cognates and false friends. Proceedings of the Master's programme Cognitive Neuroscience, 7, 6178.Google Scholar
Vanlangendonck, F., Rueschemeyer, S. A., & Dijkstra, A. (in preparation). Stimulus list composition can turn cognate facilitation effects into mirrored inhibition effects. [working title]Google Scholar
Voga, M., & Grainger, J. (2007). Cognate status and cross-script translation priming. Memory and Cognition, 35, 938952.Google Scholar
Young, T., Hazarika, D., Poria, S., & Cambria, E. (2017). Recent trends in deep learning based natural language processing. https://arxiv.org/pdf/1708.02709.pdfGoogle Scholar
Zhao, X., & Li, P. (2010). Bilingual lexical interactions in an unsupervised neural network model. International Journal of Bilingual Education and Bilingualism, 13, 505524.Google Scholar
Zhao, X., & Li, P. (2013). Simulating cross-language priming with a dynamic computational model of the lexicon. Bilingualism: Language and Cognition, 16, 288303.Google Scholar