Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T19:49:49.200Z Has data issue: false hasContentIssue false

Extensive protected area coverage and an updated global population estimate for the Endangered Madagascar Serpent-eagle Eutriorchis astur

Published online by Cambridge University Press:  27 February 2023

Luke J. Sutton*
Affiliation:
The Peregrine Fund, 5668 West Flying Hawk Lane, Boise, ID 83709 USA
Armand Benjara
Affiliation:
The Peregrine Fund’s Madagascar Project, BP4113 Antananarivo (101), Madagascar
Lily-Arison Rene de Roland
Affiliation:
The Peregrine Fund’s Madagascar Project, BP4113 Antananarivo (101), Madagascar
Russell Thorstrom
Affiliation:
The Peregrine Fund, 5668 West Flying Hawk Lane, Boise, ID 83709 USA
Christopher J. W. McClure
Affiliation:
The Peregrine Fund, 5668 West Flying Hawk Lane, Boise, ID 83709 USA
*
*Author for correspondence: Luke J. Sutton, Email: lsutton@peregrinefund.org

Summary

Knowledge gaps regarding distribution, habitat associations, and population size for rare and threatened range-restricted taxa lead to uncertainty in directing conservation action. Quantifying range metrics and species–habitat associations using Species Distribution Models (SDMs) with remote-sensing habitat data can overcome these setbacks by establishing baseline estimates for biological parameters critical for conservation assessments. Area of Habitat (AOH) is a new range metric recently developed by the International Union for Conservation of Nature (IUCN) Red List. AOH seeks to quantify inferred habitat within a species’ range to inform extinction risk assessments. Here, we used SDMs correlating occurrences with remote-sensing covariates to calculate a first estimate of AOH for the Endangered Madagascar Serpent-eagle Eutriorchis astur, and then updated additional IUCN range metrics and the current global population estimate. From these baselines we then conducted a gap analysis assessing protected area coverage. Our continuous SDM had robust predictive performance (Continuous Boyce Index = 0.835) and when reclassified to a binary model estimated an AOH = 30,121 km2, 13% less than the current IUCN range map. We estimated a global population of 533 mature individuals derived from the Madagascar Serpent-eagle AOH metric, which was within current IUCN population estimates. The current protected area network covered 95% of AOH, with the binary model identifying three additional key habitat areas as new protected area designations to fully protect Madagascar Serpent-eagle habitat. Our results demonstrated that correlating presence-only occurrences with remote-sensing habitat covariates can fill knowledge gaps useful for informing conservation action. Applying this spatial information to conservation planning would ensure almost full protected area coverage for this endangered raptor. For tropical forest habitat specialists, we recommend that potential predictors derived from remote sensing, such as vegetation indices and biophysical measures, are considered as covariates, along with other variables including climate and topography.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans.Automat. Contr. AC-19: 716723.CrossRefGoogle Scholar
Amatulli, G., Domisch, S., Tuanmu, M. N., Parmentier, B., Ranipeta, A., Malczyk, J. and Jetz, W. (2018) A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5 : 180040.CrossRefGoogle ScholarPubMed
Andriamasimanana, R. H and Cameron, A. (2013) Predicting the impacts of climate change on the distribution of threatened forest‐restricted birds in Madagascar. Ecol. Evol. 3 : 763769.CrossRefGoogle ScholarPubMed
Aragón, P., Carrascal, L. M. and Palomino, D. (2018) Macro‐spatial structure of biotic interactions in the distribution of a raptor species. J. Biogeogr. 45 : 18591871.CrossRefGoogle Scholar
Asner, G. P., Scurlock, J. M. and Hicke, J. A. (2003) Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob. Ecol. Biogeogr. 12 : 191205.CrossRefGoogle Scholar
Barbet‐Massin, M., Jiguet, F., Albert, C. H. and Thuiller, W. (2012) Selecting pseudo‐absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3 : 327338.CrossRefGoogle Scholar
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J. and Villalobos, F. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 222 : 18101819.CrossRefGoogle Scholar
Beck, J., Böller, M., Erhardt, A. and Schwanghart, W. (2014) Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 19 : 1015.CrossRefGoogle Scholar
Benjara, A. (2015) Biologie et écologie de l’Aigle serpentaire de Madagascar Eutriorchis astur (Sharpe, 1875) dans la Nouvelle Aire Protégée de Bemanevika, District Bealanana. Département des Sciences Biologiques, Université de Toliara, Madagascar: Mémoire de DEA en Biodiversité et Environnement.Google Scholar
Benjara, A., Rene de Roland, L.-A., Rakotondratsima, M. and Thorstrom, R. (2021) Effects of tropical rainforest fragmentation on bird species: a case study from the Bemanevika Protected Area, northwestern Madagascar. Ostrich 92 : 257269.CrossRefGoogle Scholar
BirdLife International. (2016) Eutriorchis astur. The IUCN Red List of Threatened Species 2016:e.T22695336A93503165. Accessed online 17 March 2022 from https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22695336A93503165.en.CrossRefGoogle Scholar
Bivand, R., Keitt, T. and Rowlingson, B. (2019) rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R Package Version 1.4-3. https://CRAN.R-project.org/package=rgdal.Google Scholar
Bivand, R., Pebesma, E. and Gomez-Rubio, V. (2013) Applied spatial data analysis with R. Second edition. New York, USA: Springer.CrossRefGoogle Scholar
Bivand, R. and Rundel, C. (2019) rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). R Package Version 0.4-3. https://CRAN.R-project.org/package=rgeos.Google Scholar
Boyce, M. S., Vernier, P. R., Nielsen, S. E. and Schmiegelow, F. K. (2002) Evaluating resource selection functions. Ecol. Modell. 157 : 281300.CrossRefGoogle Scholar
Bradter, U., Mair, L., Jönsson, M., Knape, J., Singer, A. and Snäll, T. (2018) Can opportunistically collected Citizen Science data fill a data gap for habitat suitability models of less common species? Methods Ecol. Evol. 9 : 16671678.CrossRefGoogle Scholar
Brooks, T. M., Pimm, S. L., Akçakaya, H. R., Buchanan, G. M., Butchart, S. H., Foden, W., Hilton-Taylor, C., Hoffmann, M., Jenkins, C. N., Joppa, L. and Li, B. V. (2019) Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34 : 977986.CrossRefGoogle ScholarPubMed
Buechley, E. R., Santangeli, A., Girardello, M., Neate‐Clegg, M. H., Oleyar, D., McClure, C. J. and Şekercioğlu, Ç. H. (2019) Global raptor research and conservation priorities: tropical raptors fall prey to knowledge gaps. Divers. Distrib. 25 : 856869.CrossRefGoogle Scholar
Burnham, K. and Anderson, D. (2004) Model selection and multi-model inference. Second edition. New York, USA: Springer.CrossRefGoogle Scholar
Chaikin, G. (1974) An algorithm for high speed curve generation. Comput. Graph. Image Process. 3 : 346349.CrossRefGoogle Scholar
Danielson, J. J. and Gesch, D. B. (2011) p. 26 in Global multi-resolution terrain elevation data 2010 (GMTED2010. Reston, VA, USA: US Department of the Interior, US Geological Survey.Google Scholar
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J. and Münkemüller, T. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36 : 2746.CrossRefGoogle Scholar
Elith, J. and Leathwick, J. (2007) Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers. Distrib. 13 : 265275.CrossRefGoogle Scholar
Elith, J. and Leathwick, J. R. (2009) The contribution of species distribution modelling to conservation prioritization. Pp. 7093 in Moilanen, A., Wilson, K. A. and Possingham, H. P. eds. Spatial conservation prioritization: quantitative methods and computational tools. Oxford, UK: Oxford University Press.Google Scholar
Fithian, W. and Hastie, T. (2013) Finite-sample equivalence in statistical models for presence-only data. Ann. Appl. Stat. 7 : 19171939.CrossRefGoogle ScholarPubMed
Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33 : 122.CrossRefGoogle ScholarPubMed
Gastón, A. and García-Viñas, J. I. (2011) Modelling species distributions with penalised logistic regressions: a comparison with maximum entropy models. Ecol. Modell. 222 : 20372041.CrossRefGoogle Scholar
GBIF (2020). Global Biodiversity Information Facility Occurrences Download. https://doi.org/10.15468/dl.9gbfpw.CrossRefGoogle Scholar
Geldmann, J., Barnes, M., Coad, L., Craigie, I. D., Hockings, M. and Burgess, N. D. (2013) Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161 : 230238.CrossRefGoogle Scholar
Gerstner, B. E., Kass, J. M., Kays, R., Helgen, K. M. and Anderson, R. P. (2018) Revised distributional estimates for the recently discovered olinguito (Bassaricyon neblina), with comments on natural and taxonomic history. J. Mammal. 99 : 321332.CrossRefGoogle Scholar
Guevara, L., Gerstner, B. E., Kass, J. M. and Anderson, R. P. (2018) Toward ecologically realistic predictions of species distributions: a cross‐time example from tropical montane cloud forests. Glob. Chang. Biol. 24 : 15111522.CrossRefGoogle ScholarPubMed
Hawkins, A. F., Thiollay, J. M. and Goodman, S. M. (1998) The birds of the Réserve Spéciale d’Anjanaharibe-Sud, Madagascar. Pp. 93127 in Goodman, S. M. ed. A floral and faunal inventory of the Réserve Spéciale d’Anjanaharibe-Sud, Madagascar: with reference to elevational variation. Fieldiana Zoology. Chicago, IL, USA: The Field Museum.Google Scholar
Hijmans, R. J. (2017) raster: Geographic Data Analysis and Modeling. R Package Version 2.6-7. https://CRAN.R-project.org/package=raster.Google Scholar
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. and Guisan, A. (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol. Modell. 199 : 142152.CrossRefGoogle Scholar
Hobi, M. L., Dubinin, M., Graham, C. H., Coops, N. C., Clayton, M. K., Pidgeon, A. M. and Radeloff, V. C. (2017) A comparison of Dynamic Habitat Indices derived from different MODIS products as predictors of avian species richness. Remote Sens. Environ. 195 : 142152.CrossRefGoogle Scholar
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X. and Ferreira, L. G. (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83 : 195213.CrossRefGoogle Scholar
Hurvich, C. M. and Tsai, C. L. (1989) Regression and time-series model selection in small sample sizes. Biometrika 76 : 297307.CrossRefGoogle Scholar
Ichii, K., Kawabata, A. and Yamaguchi, Y. (2002) Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. Int. J. Remote Sens. 23 : 38733878.CrossRefGoogle Scholar
IUCN Red List Technical Working Group. (2018) Mapping standards and data quality for the IUCN Red List categories and criteria. Version 1.16. Gland, Switzerland: International Union for Conservation of Nature.Google Scholar
IUCN Standards and Petitions Committee. (2019) Guidelines for using the IUCN Red List categories and criteria. Version 14. http://www.iucnredlist.org/documents/RedListGuidelines.pdf. Gland, Switzerland: International Union for Conservation of Nature.Google Scholar
Karpanty, S. M. and Grella, R. (2001) Lemur responses to diurnal raptor calls in Ranomafana National Park, Madagascar. Folia Primatol. 72 : 100103.CrossRefGoogle ScholarPubMed
Ladle, R. and Whittaker, R. J. (2011) Conservation biogeography. Chichester, UK: John Wiley.CrossRefGoogle Scholar
Lee, C. K., Keith, D. A., Nicholson, E. and Murray, N. J. (2019) Redlistr: tools for the IUCN Red Lists of ecosystems and threatened species in R. Ecography 42 : 10501055.CrossRefGoogle Scholar
Liu, C., White, M. and Newell, G. (2013) Selecting thresholds for the prediction of species occurrence with presence‐only data. J. Biogeogr. 40 : 778789.CrossRefGoogle Scholar
Lomolino, M. V. (2004) Conservation biogeography. Pp. 293296 in Lomolino, M. V. and Heaney, L. R. eds. Frontiers of biogeography: new directions in the geography of nature. Sunderland, MA, USA: Sinauer Associates.Google Scholar
Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. and Pino, J. (2013) Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol. Conserv. 166 : 221230.CrossRefGoogle Scholar
Margules, C. R. and Pressey, R. L. (2000) Systematic conservation planning. Nature 405 : 243253.CrossRefGoogle ScholarPubMed
Matthiopoulos, J., Fieberg, J. and Aarts, G. (2020) Species-habitat associations: spatial data, predictive models, and ecological insights. University of Minnesota Libraries Publishing. Accessed online from the University of Minnesota Digital Conservancy. http://hdl.handle.net/11299/217469.CrossRefGoogle Scholar
Mazerolle, M. J. (2020) AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R Package Version 2.3-1. https://cran.r-project.org/package=AICcmodavg.Google Scholar
McClure, C. J. W., Anderson, D. L., Buij, R., Dunn, L., Henderson, M. T., McCabe, J. and Tavares, J. (2021) Commentary: the past, present, and future of the Global Raptor Impact Network. J. Raptor Res. 55 : 605618.CrossRefGoogle Scholar
McClure, C. J. W., Westrip, J. R. S., Johnson, J. A., Schulwitz, S. E., Virani, M. Z., Davies, R., Symes, A., Wheatley, H., Thorstrom, R., Amar, A., Buij, R., Jones, V. R., Williams, N. P., Buechley, E. R. and Butchart, S. H. M. (2018) State of the world’s raptors: distributions, threats, and conservation recommendations. Biol. Conserv. 227 : 390402.CrossRefGoogle Scholar
Meineri, E. and Hylander, K. (2017) Fine‐grain, large‐domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography 40 : 10031013.CrossRefGoogle Scholar
Muscarella, R., Galante, P. J., Soley‐Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M. and Anderson, R. P. (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5 : 11981205.CrossRefGoogle Scholar
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R. and Lotsch, A. (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83 : 214231.CrossRefGoogle Scholar
O’Bryan, C. J., Allan, J. R., Suarez-Castro, A. F., Delsen, D. M., Buij, R., McClure, C. J. W., Rehbein, J. A., Virani, M. Z., McCabe, J. D., Tyrrell, P. and Negret, P. J. (2022) Human impacts on the world’s raptors. Front. Ecol. Evol. 10. DOI: https://doi.org/10.3389/fevo.2022.624896.CrossRefGoogle Scholar
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C. and Loucks, C. J. (2001) Terrestrial ecoregions of the world: a new map of life on earth. A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51 : 933938.CrossRefGoogle Scholar
Pearson, R. G. and Dawson, T. P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12 : 361371.CrossRefGoogle Scholar
Pearson, R. G., Raxworthy, C. J., Nakamura, M. and Peterson, A. T. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34 : 102117.CrossRefGoogle Scholar
Peterson, A. T. and Anamza, T. (2015) Ecological niches and present and historical geographic distributions of species: a 15-year review of frameworks, results, pitfalls, and promises. Folia Zool. 64 : 207218.CrossRefGoogle Scholar
Peterson, A. T., Papeş, M. and Soberón, J. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell. 213 : 6372.CrossRefGoogle Scholar
Pettorelli, N. (2013) The normalized difference vegetation index. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. and Blair, M. E. (2017) Opening the black box: an open‐source release of Maxent. Ecography 40 : 887893.CrossRefGoogle Scholar
Qiu, J., Yang, J., Wang, Y. and Su, H. (2018) A comparison of NDVI and EVI in the DisTrad model for thermal sub-pixel mapping in densely vegetated areas: a case study in Southern China. Int. J. Remote Sens. 39 : 21052118.CrossRefGoogle Scholar
R Core Team. (2018) R: a language and environment for statistical computing. https://www.R-project.org/.Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Radeloff, V. C., Dubinin, M., Coops, N. C., Allen, A. M., Brooks, T. M., Clayton, M. K., Costa, G. C., Graham, C. H., Helmers, D. P., Ives, A. R. and Kolesov, D. (2019) The dynamic habitat indices (DHIs) from MODIS and global biodiversity. Remote Sens. Environ. 222 : 204214.CrossRefGoogle Scholar
Raxworthy, C. J. and Colston, P. R. (1992) Conclusive evidence for the continuing existence of the Madagascar Serpent-eagle Eutriorchis astur . Bull. Br. Ornithol. Club 112 : 108111.Google Scholar
Raxworthy, C. J., Martinez-Meyer, E., Horning, N., Nussbaum, R. A., Schneider, G. E., Ortega-Huerta, M. A. and Peterson, A. T. (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426 : 837841.CrossRefGoogle ScholarPubMed
Rhoden, C. M., Peterman, W. E. and Taylor, C. A. (2017) Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ. 5 : e3632. DOI: 10.7717/peerj.3632.CrossRefGoogle ScholarPubMed
Riddle, B. R., Ladle, R. J., Lourie, S. A. and Whittaker, R. J. (2011) Basic biogeography: estimating biodiversity and mapping nature. Pp. 4592 in Ladle, R. J. and Whittaker, R. J. eds. Conservation Biogeography. Chichester, UK: John Wiley.CrossRefGoogle Scholar
Rodrigues, A. S., Akcakaya, H. R., Andelman, S. J., Bakarr, M. I., Boitani, L., Brooks, T. M., Chanson, J. S., Fishpool, L. D., Da Fonseca, G. A., Gaston, K. J. and Hoffmann, M. (2004) Global gap analysis: priority regions for expanding the global protected-area network. BioScience 54 : 10921100.CrossRefGoogle Scholar
Shcheglovitova, M. and Anderson, R. P. (2013) Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol. Modell. 269 : 917.CrossRefGoogle Scholar
Sheldon, B. C. and Duckworth, J. W. (1990) Rediscovery of the Madagascar Serpent-eagle Eutriorchis astur . Bull. Br. Ornithol. Club 110 : 126130.Google Scholar
Strimas-Mackey, M. (2021) smoothr: Smooth and Tidy Spatial Features. R package version 0.2.1. https://CRAN.R-project.org/package=smoothr.Google Scholar
Sutton, L. J., Anderson, D. L., Franco, M., McClure, C. J. W., Miranda, E. B., Vargas, F. H., Vargas González, J. de J and Puschendorf, R. (2021a) Range-wide habitat use of the Harpy Eagle indicates four major tropical forest gaps in the Key Biodiversity Area network. Ornithol. Appl. 124. DOI: 10.1093/ornithapp/duac019/6578683.Google Scholar
Sutton, L. J., Anderson, D. L., Franco, M., McClure, C. J. W., Miranda, E. B., Vargas, F. H., Vargas González, J. de J and Puschendorf, R. (2021b) Geographic range estimates and environmental requirements for the harpy eagle derived from spatial models of current and past distribution. Ecol. Evol. 11 : 481497.CrossRefGoogle ScholarPubMed
Sutton, L.J., Anderson, D.L., Franco, M., Gomes, F.B.R., McClure, C.J.W., Miranda, E.B.P., Vargas, F.H., Vargas González, J. de, J. & Puschendorf, R. (2023a). Prey resources are equally important as climatic conditions for predicting the distribution of a broad-ranged apex predator. Diversity & Distributions.00: 116. DOI: https://doi.org/10.1111/ddi.13684 Google Scholar
Sutton, L. J., Ibañez, J. C., Salvador, D. I., Taraya, R. L., Opiso, G. S., Senarillos, T. P. and McClure, C. J. W. (2023b) Priority conservation areas and a global population estimate for the Critically Endangered Philippine Eagle. Animal Conservation. DOI: https://doi.org/10.1111/acv.12854 CrossRefGoogle Scholar
Sutton, L. J., McClure, C. J., Kini, S. and Leonardi, G. (2020) Climatic constraints on Laggar Falcon (Falco jugger) distribution predicts multidirectional range movements under future climate change scenarios. J. Raptor Res. 54 : 117.CrossRefGoogle Scholar
Sutton, L.J. and Puschendorf, R. (2020) Climatic niche of the Saker Falcon Falco cherrug: predicted new areas to direct population surveys in Central Asia. Ibis 162 : 2741.CrossRefGoogle Scholar
Sutton, L. J., Rene de Roland, L.-A., Thorstrom, R. and McClure, C. J. W. (2022) Distribution and habitat use of the Madagascar Peregrine Falcon: first estimates for area of habitat and population size. Bird Conserv. Internatn. 117.CrossRefGoogle Scholar
Thorstrom, R. and Rene de Roland, L.-A. (2000) First nest description, breeding behaviour and distribution of the Madagascar Serpent‐Eagle Eutriorchis astur . Ibis 142 : 217224.CrossRefGoogle Scholar
Thorstrom, R., Watson, R. T., Damary, B., Toto, F., Baba, M. and Baba, V. (1995) Repeated sightings and first capture of a live Madagascar Serpent-eagle Eutriorchis astur . Bull. Br. Ornithol. Club 115 : 4045.Google Scholar
Title, P. O. and Bemmels, J. B. (2018) ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41 : 291307.CrossRefGoogle Scholar
Tuanmu, M. N. and Jetz, W. (2014) A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23 : 10311045.CrossRefGoogle Scholar
Tuanmu, M. N. and Jetz, W. (2015) A global, remote sensing‐based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 24 : 13291339.CrossRefGoogle Scholar
UNEP-WCMC and IUCN (2021) Protected Planet: Madagascar; The World Database on Protected Areas (WDPA). Accessed online December 2021 from www.protectedplanet.net.Google Scholar
Valavi, R., Guillera‐Arroita, G., Lahoz‐Monfort, J. J. and Elith, J. (2021) Predictive performance of presence‐only species distribution models: a benchmark study with reproducible code. Ecol. Monogr:. e1486.Google Scholar
Warren, D. L. and Seifert, S. N. (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21 : 335342.CrossRefGoogle ScholarPubMed
Warton, D. I. and Shepherd, L. C. (2010) Poisson point process models solve the “pseudo-absence problem” for presence-only data in ecology. Ann. Appl. Stat. 4 : 13831402.Google Scholar
Willmott, C. J. and Feddema, J. J. (1992) A more rational climatic moisture index. Prof. Geogr. 44 : 8488.CrossRefGoogle Scholar
Wilson, M. F., O’Connell, B., Brown, C., Guinan, J. C. and Grehan, A. J. (2007) Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 30 : 335.CrossRefGoogle Scholar
Supplementary material: File

Sutton et al. supplementary material

Sutton et al. supplementary material

Download Sutton et al. supplementary material(File)
File 6.4 MB