Hostname: page-component-784d4fb959-57n77 Total loading time: 0 Render date: 2025-07-16T06:16:03.210Z Has data issue: false hasContentIssue false

Influence of the El Niño Southern Oscillation and wetland condition on the abundance and spatial distribution of two flamingo species in lowland wetlands of central Argentina

Published online by Cambridge University Press:  16 May 2025

Ignacio M. Barberis*
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, S2125ZAA Zavalla, Argentina Grupo de Conservación Flamencos Altoandinos (GCFA)
Jorgelina P. Asmus
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, S2125ZAA Zavalla, Argentina
Marcelo Romano
Affiliation:
Grupo de Conservación Flamencos Altoandinos (GCFA) Centro de Investigaciones en Biodiversidad y Ambiente (ECOSUR), Rosario, Argentina
Caterina Barisón
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA Zavalla, Argentina Grupo de Conservación Flamencos Altoandinos (GCFA)
Felicity Arengo
Affiliation:
Grupo de Conservación Flamencos Altoandinos (GCFA) Center for Biodiversity and Conservation, American Museum of Natural History, New York, USA
*
Corresponding author: Ignacio M. Barberis; Email: ignaciobarberis@yahoo.com

Summary

Birds show considerable spatial and temporal fluctuations in their abundance due to variations in habitat conditions. The lowland wetlands of the Pampas region in Argentina are key wintering areas for two flamingo species. The Chilean Flamingo Phoenicopterus chilensis is a year-round resident, while the Andean Flamingo Phoenicoparrus andinus is a partial altitudinal migrant that uses these wetlands in winter when some of the wetlands in the high Andes freeze over. We studied the association between the annual abundance of both flamingo species, wetland condition (water surface area and water salinity), and environmental conditions (flooding) driven by the El Niño Southern Oscillation (ENSO) over 15 consecutive winters (July–August 2008–2022) in 24 lowland wetlands in central Argentina. There were notable differences in wetland surface area and water conductivity between years, with some wetlands ranging from flooded to almost dried out. For any given year, there were also large differences in water surface area and water conductivity between wetlands. Both flamingo species showed marked fluctuations in abundance over the study period. Each year, the Chilean Flamingo was more abundant than the Andean Flamingo. The Chilean Flamingo was recorded at least once in every wetland, while the Andean Flamingo was absent from three wetlands and was not observed in two years during the study. The Chilean Flamingo was recorded in wetlands covering a larger range of water conductivity values than the Andean Flamingo (2.53–58.23 ms/cm vs 2.94–16.20 ms/cm, respectively). The abundance of both flamingo species was higher at intermediate water conductivity values and decreased at higher or lower values. These results show that these lowland wetlands are subjected to strong interannual variation in climatic conditions which affect lake conditions, and thus the abundance of both flamingo species, highlighting the importance of conserving wetlands encompassing a broad range of environmental conditions.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aliaga, V.S., Ferrelli, F. and Piccolo, M.C. (2017). Regionalization of climate over the Argentine Pampas. International Journal of Climatology 37, 12371247. https://doi.org/10.1002/joc.5079CrossRefGoogle Scholar
Álvarez, L.M., Meglioli, P.A., Rivera, J.A., Bianchi, L.O., Martín, S. and Sosa, H. (2018). Efectos de la variación hidrológica sobre la dinámica poblacional del flamenco austral (Phoenicopterus chilensis) en el Sitio Ramsar Laguna de Llancanelo, Mendoza, Argentina. Ornitología Neotropical 29, 275280. https://doi.org/10.58843/ornneo.v29i1.328CrossRefGoogle Scholar
Aragón, R., Jobbágy, E.G. and Viglizzo, E.F. (2010). Surface and groundwater dynamics in the sedimentary plains of the Western Pampas (Argentina). Ecohydrology 4, 433447. https://doi.org/10.1002/eco.149CrossRefGoogle Scholar
Barisón, C., Romano, M., Asmus, J., Barberis, I.M. and Arengo, F. (2018). New record of Chilean flamingos nesting at Laguna Las Tunas in south-eastern Córdoba province, Argentina. Flamingo e1, 6166.Google Scholar
Barnston, A.G., Chelliah, M. and Goldenberg, S.B. (1997). Documentation of a highly ENSO-related sst region in the equatorial pacific: Research note. Atmosphere-Ocean 35, 367383. https://doi.org/10.1080/07055900.1997.9649597Google Scholar
Battauz, Y.S., José de Paggi, S., Paggi, J.C., Romano, M. and Barberis, I.M. (2013). Zooplankton characterisation of Pampean saline shallow lakes, habitat of the Andean flamingoes. Journal of Limnology 72, 531542. https://doi.org/10.4081/jlimnol.2013.e44CrossRefGoogle Scholar
Bibby, C.J., Burges, N.D., Hill, D.A. and Mustoe, S.H. (2000). Bird Census Techniques. London: Academic Press.Google Scholar
BirdLife International (2018). Phoenicopterus chilensis. The IUCN Red List of Threatened Species 2018: e.T22697365A132068236. Available at https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22697365A132068236.en (accessed 4 April 2024).Google Scholar
BirdLife International (2020). Phoenicoparrus andinus. The IUCN Red List of Threatened Species 2020: e.T22697387A182422217. Available at https://doi.org/10.2305/IUCN.UK.2020-3.RLTS.T22697387A182422217.en (accessed 4 April 2024).CrossRefGoogle Scholar
Brandolin, P.G. and Blendinger, P.G. (2016). Effect of habitat and landscape structure on waterbird abundance in wetlands of central Argentina. Wetlands Ecology and Management 24, 93105. https://doi.org/10.1007/s11273-015-9454-yCrossRefGoogle Scholar
Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A. et al. (2017). glmmTMB balances speed and flexibility among packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal 9, 378400. https://doi.org/10.32614/RJ-2017-066CrossRefGoogle Scholar
Bucher, E.H. (1992). Population and conservation status of flamingos in Mar Chiquita, Cordoba, Argentina. Colonial Waterbirds 15, 179184. https://doi.org/10.2307/1521451CrossRefGoogle Scholar
Bucher, E.H., Chani, J.M. and Echevarría, A.L. (2000). Andean flamingos breeding at Laguna Brava, La Rioja, Argentina. Waterbirds 23(Special Publication 1), 119120.CrossRefGoogle Scholar
Bucher, E.H. and Curto, E. (2012). Influence of long-term climatic changes on breeding of the Chilean flamingo in Mar Chiquita, Córdoba, Argentina. Hydrobiologia 697, 127137. https://doi.org/10.1007/s10750-012-1176-zCrossRefGoogle Scholar
Caziani, S.M. and Derlindati, E. (2000). Abundance and habitat of high Andes flamingos in northwestern Argentina. Waterbirds 23(Special Publication 1), 121133.CrossRefGoogle Scholar
Caziani, S.M., Rocha, O., Rodríguez Ramírez, E., Romano, M.C., Derlindati, E.J., Tálamo, A. et al. (2007). Seasonal distribution, abundance, and nesting of Puna, Andean, and Chilean flamingos. The Condor 109, 276287. https://doi.org/10.1093/condor/109.2.276CrossRefGoogle Scholar
Cézilly, F., Boy, V., Green, R.E., Hirons, G.J.M. and Johnson, A.R. (1995). Interannual variation in Greater Flamingo breeding success in relation to water levels. Ecology 76, 2026. https://doi.org/10.2307/1940628CrossRefGoogle Scholar
Colla, M.F., Lencina, A.I. and Farias, M.E. (2022). Diatom and invertebrate assemblages in high altitude saline wetlands of the Argentinian Puna and their relation to environmental factors. Anais da Academia Brasileira de Ciências 94, e20200070. https://doi.org/10.1590/0001-3765202220200070CrossRefGoogle Scholar
Dejoux, C. (1993). Benthic invertebrates of some saline lakes of the Sud Lipez region, Bolivia. Hydrobiologia 27, 257267. https://doi.org/10.1007/978-94-011-2076-0_21CrossRefGoogle Scholar
Delfino, H.C. (2023). A fragile future for pink birds: habitat suitability models predict a high impact of climate change on the future distribution of flamingos. Emu – Austral Ornithology 123, 310324. https://doi.org/10.1080/01584197.2023.2257757CrossRefGoogle Scholar
Delfino, H.C. and Carlos, C.J. (2024). Still standing on one leg: a systematic review of threats, priorities, and conservation perspectives for flamingos (Phoenicopteridae). Biodiversity and Conservation 33, 12271268. https://doi.org/10.1007/s10531-024-02816-xCrossRefGoogle Scholar
Derlindati, E.J., Arengo, F., Michelutti, M., Romano, M.C., Sosa Fabre, H., Ortiz, E. et al. (2024). A review of the ecology and conservation of the Andean Flamingo Phoenicoparrus andinus and Puna Flamingo P. jamesi in South America. Bird Conservation International 34, e37. https://doi.org/10.1017/S0959270924000273CrossRefGoogle Scholar
Derlindati, E.J., Romano, M.C., Cruz, N.N., Barisón, C., Arengo, F. and Barberis, I.M. (2014). Seasonal activity patterns and abundance of Andean flamingo (Phoenicoparrus andinus) at two contrasting wetlands in Argentina. Ornitología Neotropical 25, 317331.Google Scholar
Frau, D., Battauz, Y., Mayora, G. and Marconi, P. (2015). Controlling factors in planktonic communities over a salinity gradient in high-altitude lakes. Annales de Limnologie – International Journal of Limnology 51, 261272. https://doi.org/10.1051/limn/2015020Google Scholar
Garreaud, R. and Aceituno, P. (2001). Interannual rainfall variability over the South American Altiplano. Journal of Climate 14, 27792789. https://doi.org/10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Githaiga, J. (2022). Impacts of hydroclimatic conditions on lesser flamingo, Phoeniconaias minor, Geoffroy populations in three Kenyan alkaline lakes. Africa Journal of Physical Sciences 7, 929.Google Scholar
Guerra, L., Martini, M.A., Córdoba, F.E., Ariztegui, D. and Piovano, E.L. (2019). Multi-annual response of a Pampean shallow lake from central Argentina to regional and large-scale climate forcings. Climate Dynamics 52, 68476861. https://doi.org/10.1007/s00382-018-4548-xCrossRefGoogle Scholar
Guerra, L., Piovano, E.L., Córdoba, F.E., Sylvestre, F. and Damatto, S. (2015). The hydrological and environmental evolution of shallow Lake Melincué, central Argentinean Pampas, during the last millennium. Journal of Hydrology 529, 570583. https://doi.org/10.1016/j.jhydrol.2015.01.002CrossRefGoogle Scholar
Gutiérrez, J.S., Moore, J.N., Donnelly, J.P., Dorador, C., Navedo, J.G. and Senner, N.R. (2022). Climate change and lithium mining influence flamingo abundance in the Lithium Triangle. Proceedings of the Royal Society B: Biological Sciences 289, 20212388. https://doi.org/10.1098/rspb.2021.2388CrossRefGoogle ScholarPubMed
Hammer, U.T. (1986). Saline Lake Ecosystems of the World. Dordrecht: Dr W. Junk Publishers.Google Scholar
Hartig, F. (2022). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package version 0.4.6. http://florianhartig.github.io/DHARMa/.Google Scholar
Hurlbert, S.H. and Keith, J.O. (1979). Distribution and spatial patterning of Flamingos in the Andean Altiplano. The Auk 96, 328342. https://digitalcommons.usf.edu/auk/vol96/iss2/10Google Scholar
Iriondo, J.M. and Kröhling, D. (2007). Geomorfología y sedimentología de la Cuenca Superior del Río Salado (Sur de Santa Fe y Noroeste de Buenos Aires, Argentina). Latin American Journal of Sedimentology and Basin Analysis 14, 123.Google Scholar
Jahn, A.E., Cereghetti, J., Hallworth, M.T., Ketterson, E.D., Ryder, B., Marra, P.P. et al. (2023). Highly variable movements by Andean Flamingos (Phoenicoparrus andinus): implications for conservation and management. Avian Conservation and Ecology 18, 13. https://doi.org/10.5751/ACE-02521-180213CrossRefGoogle Scholar
Jaksic, F.M. (2004). El Niño effects on avian ecology: lessons learned from the southeastern Pacific. Ornitología Neotropical 15(Suppl.), 6172Google Scholar
Lobos-Roco, F., Hartogensis, O., Suárez, F., Huerta-Viso, A., Benedict, I., De La Fuente, A. et al. (2022). Multi-scale temporal analysis of evaporation on a saline lake in the Atacama Desert. Hydrology and Earth System Sciences 26, 37093729. https://doi.org/10.5194/hess-26-3709-2022CrossRefGoogle Scholar
Marconi, P., Arengo, F., Castro, A., Rocha, O., Valqui, M., Aguilar, S. et al. (2020). Sixth International Simultaneous Census of three flamingo species in the Southern Cone of South America: Preliminary analysis. Flamingo e3, 6775.Google Scholar
Marconi, P., Arengo, F. and Clark, A. (2022). The arid Andean plateau waterscapes and the lithium triangle: flamingos as flagships for conservation of high-altitude wetlands under pressure from mining development. Wetlands Ecology and Management 30, 827852. https://doi.org/10.1007/s11273-022-09872-6Google Scholar
Marconi, P.M. (2010). Manual de Técnicas de Monitoreo de Condiciones Ecológicas para el Manejo Integrado de la Red de Humedales de Importancia para la Conservación de Flamencos Altoandinos. Salta: Fundación Yuchán.Google Scholar
Marconi, P.M. and Sureda, A.L. (2008). High Andean Flamingo Wetland Network: Evaluation of degree of implementation of priority sites-preliminary results. Flamingo 16, 3640.Google Scholar
Mascitti, V. (2001). Habitat changes in Laguna de Pozuelos, Jujuy, Argentina: implications for South American flamingo populations. Waterbirds 24, 1621. https://doi.org/10.2307/1522238CrossRefGoogle Scholar
Mascitti, V. and Kravetz, F.O. (2002). Bill morphology of South American flamingos. The Condor 104, 7383. https://doi.org/10.1093/condor/104.1.73CrossRefGoogle Scholar
Mawhinney, J. (2008). Flamingo (Phoenicopterus ruber ruber) distribution and feeding behavior in relation to salinity levels on Bonaire, Netherland Antilles. Physis – Journal of Marine Science 3, 15.Google Scholar
Ministerio de Ambiente y Desarrollo Sustentable and Aves Argentina (2017). Categorización de las Aves de la Argentina (2015). Buenos Aires: Ministerio de Ambiente y Desarrollo Sustentable.Google Scholar
Nores, M. (2024). Waterbird fluctuations in Mar Chiquita Lake, Central Argentina: The last 13 years. Waterbirds 46, 199204. https://doi.org/10.1675/063.046.0411CrossRefGoogle Scholar
O’Hara, P.D., Haase, B.J., Elner, R.W., Smith, B.D. and Kenyon, J.K. (2007). Are population dynamics of shorebirds affected by El Niño/Southern Oscillation (ENSO) while on their non-breeding grounds in Ecuador? Estuarine, Coastal and Shelf Science 74, 96108. https://doi.org/10.1016/j.ecss.2007.03.031CrossRefGoogle Scholar
Ortiz, E., Gamboa, M., Salas, M. and Vera, J. (2020). Ítems alimenticios potenciales para la parina grande (Phoenicoparrus andinus, (Philippi, 1854)) en dos tipos de hábitats acuáticos de la laguna de Parinacochas, Ayacucho, Perú. Biotempo 17, 311320.CrossRefGoogle Scholar
Ortiz, E.P., Vizcarra, J.K. and Valqui, M. (2023). Distribución, ecología y conservación del Flamenco Andino (Phoenicoparrus andinus Philippi, 1854) (Aves: Phoenicopteriformes): Una revisión sistemática sobre su estado en el Perú. Biotempo 20, 101115.CrossRefGoogle Scholar
Polla, W.M., Di Pasquale, V., Rasuk, M.C., Barberis, I., Romano, M., Manzo, R. et al. (2018). Diet and feeding selectivity of the Andean Flamingo Phoenicoparrus andinus and Chilean Flamingo Phoenicopterus chilensis in lowland wintering areas. Wildfowl 68, 329.Google Scholar
Team, R Core (2023). R: A Language and Environment for Statistical Computing. R version 4.0.3. Vienna: The R. Foundation for Statistical Computing.Google Scholar
Racca, J.M.G. and Canoba, C.A. (2014). Estudio geomorfológico de la cuenca de aportes a la Laguna del Chañar (Provincias de Santa Fe y Buenos Aires), Argentina. Boletín del Instituto de Fisiografía y Geología 84, 128.Google Scholar
Ragonese, A.E. and Covas, G. (1947). La flora halófila del sur de la provincia de Santa Fe (República Argentina). Darwiniana 7, 401496.Google Scholar
Romano, M.C., Barberis, I.M., Guerra, L., Piovano, E.L. and Minotti, P. (2014). Sitio Ramsar Humedal Laguna Melincué: Estado de situación. Santa Fe: Secretaría de Medio Ambiente de la Provincia de Santa Fe.Google Scholar
Romano, M.C., Barberis, I.M., Pagano, F. and Maidagan, J.I. (2005). Seasonal and interannual variation in waterbird abundance and species composition in the Melincué saline lake, Argentina. European Journal of Wildlife Research 51, 113. https://doi.org/10.1007/s10344-005-0078-zCrossRefGoogle Scholar
Romano, M.C., Barberis, I.M., Pagano, F., Marconi, P.M. and Arengo, F. (2008). Winter monitoring of Andean and Chilean Flamingos in lowland wetlands of central Argentina. Flamingo 16, 4547.Google Scholar
Romano, M.C., Barberis, I.M., Pagano, F., Minotti, P. and Arengo, F. (2017). Variaciones anuales en la abundancia y en la distribución espacial del flamenco austral (Phoenicopterus chilensis) y la parina grande (Phoenicoparrus andinus) en el Sitio Ramsar Laguna Melincué, Argentina. El Hornero 32, 215225.CrossRefGoogle Scholar
Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution 1, 103113. https://doi.org/10.1111/j.2041-210X.2010.00012.xCrossRefGoogle Scholar
Schmaljohann, H., Eikenaar, C. and Sapir, N. (2022). Understanding the ecological and evolutionary function of stopover in migrating birds. Biological Reviews 97, 12311252. https://doi.org/10.1111/brv.12839CrossRefGoogle ScholarPubMed
Senner, N.R., Moore, J.N., Seager, S.T., Dougill, S., Kreuz, K. and Senner, S.E. (2018). A salt lake under stress: Relationships among birds, water levels, and invertebrates at a Great Basin saline lake. Biological Conservation 220, 320329. https://doi.org/10.1016/j.biocon.2018.02.003CrossRefGoogle Scholar
Sosa, H. and Martín, S. (2012). Evaluación de la población del flamenco austral (Phoenicopterus chilensis) en la Reserva Provincial Laguna Llancanelo, Mendoza, Argentina. Nótulas Faunísticas (Segunda serie) 104, 18.Google Scholar
Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A. et al. (2018). El Niño–Southern Oscillation complexity. Nature 559, 535545. https://doi.org/10.1038/s41586-018-0252-6CrossRefGoogle ScholarPubMed
Tobar, C., Rau, J.R., Iriarte, A., Villalobos, R., Lagos, N., Cursach, J. et al. (2012). Composition, diversity and size of diatoms consumed by the Andean Flamingo (Phoenicoparrus andinus) in Salar de Punta Negra, Antofagasta Region, northern Chile. Ornitología Neotropical 23, 243250.Google Scholar
Tobar, C.N., Rau, J.R., Fuentes, N., Gantz, A., Suazo, C.G., Cursach, J.A. et al. (2014). Diet of the Chilean flamingo Phoenicopterus chilensis (Phoenicopteriformes: Phoenicopteridae) in a coastal wetland in Chiloé, southern Chile. Revista Chilena de Historia Natural 87, 17.CrossRefGoogle Scholar
Valdivielso, S., Murray, J., Custodio, E., Hassanzadeh, A., Martínez, D.E. and Vázquez-Suñé, E. (2024). Seasonal and isotopic precipitation patterns in the semi-arid and high mountain areas. Science of the Total Environment 925, 171750. https://doi.org/10.1016/j.scitotenv.2024.171750CrossRefGoogle ScholarPubMed
Vargas, F., Barlow, S., Hart, T., Jimenez-Uzcátegui, G., Chávez, J., Naranjo, S. et al. (2008). Effects of climate variation on the abundance and distribution of flamingos in the Galápagos Islands. Journal of Zoology 276, 252265. https://doi.org/10.1111/j.1469-7998.2008.00485.xCrossRefGoogle Scholar
Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A. and Smith, G.M. (2009). Mixed Effects Models and Extensions in Ecology with R. New York: Springer.Google Scholar
Supplementary material: File

Barberis et al. supplementary material

Barberis et al. supplementary material
Download Barberis et al. supplementary material(File)
File 685.6 KB