Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T03:50:21.549Z Has data issue: false hasContentIssue false

Prioritizing strain insulators for raptor conservation

Published online by Cambridge University Press:  07 July 2021

FRANCISCO GUIL*
Affiliation:
Spanish Ministry for the Ecological Transition and the Demographical Challenge. Plaza San Juan de la Cruz, S/N. 28071. Madrid, Spain.
M. ÁNGELES SORIA
Affiliation:
Tragsa Group. C/ Conde de Peñalver, 84. 28006. Madrid, Spain.
VÍCTOR ORTEGA
Affiliation:
Fieb Foundation (Fundación para la Investigación en Etología y Biodiversidad, FIEB). Camino El Álamo S/N. 45950. Casarrubios del Monte, Toledo, Spain.
RUBÉN GARCÍA-SÁNCHEZ
Affiliation:
Fieb Foundation (Fundación para la Investigación en Etología y Biodiversidad, FIEB). Camino El Álamo S/N. 45950. Casarrubios del Monte, Toledo, Spain. Centro de Recuperación de Animales Silvestres (CRAS). Arr. de Soto de Viñuelas, s/n, 28760 Tres Cantos, Madrid, Spain.
SILVIA VILLAVERDE-MORCILLO
Affiliation:
Fieb Foundation (Fundación para la Investigación en Etología y Biodiversidad, FIEB). Camino El Álamo S/N. 45950. Casarrubios del Monte, Toledo, Spain. Centro de Recuperación de Animales Silvestres (CRAS). Arr. de Soto de Viñuelas, s/n, 28760 Tres Cantos, Madrid, Spain.
*
*Author for correspondence; email: fguil@miteco.es

Summary

Avian species often take advantage of human-made structures, such as perching on power poles, although this can lead to negative effects for both birds and infrastructure. It has been demonstrated that anchor-type pylons, with strain insulators, are amongst the most dangerous of these structures. Our goal was to develop a methodological approach to evaluate the ways in which raptors perch on the six most commonly used strain insulator configurations in Spain, and to build a risk index that can be used to prioritise them. To study the ways raptors perch, we worked with six wildlife rescue centres in central Spain for almost a year assessing these six strain insulator configurations in 83 perch trials with 176 raptors in ample flying pens. We analysed 475 complete survey days, with an approximate number of 258,960 analysed pictures, including 6,766 perchings on strain insulators. We assessed the influential factors for these 6,766 perchings and developed a novel approach to prioritise strain insulator configurations that can be used anywhere. Our results suggest that longer insulator strains (i.e. PECA-1000 and Caon-C3670) are the safest, according to our prioritization criteria, although these results require further assessment in the field. Managers and conservationists should take into account these results to improve management and conservation actions.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J. (2006) A heuristic risk assessment technique for birdstrike management at airports. Risk Anal. 26: 723729.CrossRefGoogle ScholarPubMed
Andersson, M., Wallander, J. and Isaksson, D. (2009) Predator perches: a visual search perspective. Funct. Ecol. 23: 373379.CrossRefGoogle Scholar
APLIC (Avian Power Line Interaction Committee) (2006) Suggested practices for raptor protection on power lines – the state of the art in 2006. Washington, DC: Edison Electric Institute and Raptor Research Foundation.Google Scholar
Avery, M. L. and Genchi, A. C. (2004) Avian perching deterrents on ultrasonic sensors at airport wind-shear alert systems. Wildl. Soc. Bull. 32: 718725.CrossRefGoogle Scholar
Barbosa, A. M., Real, R., Muñoz, A. R. and Brown, J. A. (2013) New measures for assessing model equilibrium and prediction mismatch in species distribution models. Divers. Distrib. 19: 13331338 CrossRefGoogle Scholar
Bedrosian, G., Carlisle, J. D., Woodbridge, B., Dunk, J. R., Wallace, Z. P., Dwyer, J. F., Harness, R. E., Mojica, E. K., Williams, G. E. and Jones, T. (2020) A spatially explicit model to predict the relative risk of Golden Eagle electrocutions in the Northwestern Plains, USA. J. Raptor Res. 54: 110125.CrossRefGoogle Scholar
Bohall, P. G. and Collopy, M. W. (1984) Seasonal abundance, habitat use, and perch sites of four raptor species in north-central Florida. J. Field Ornithol. 55: 181189.Google Scholar
Bonser, R. H. (1999) Branching out in locomotion: the mechanics of perch use in birds and primates. J. Exp. Biol. 202: 14591463.CrossRefGoogle ScholarPubMed
Bowler, D. E. and Benton, T. G. (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol. Rev. 80: 205225.CrossRefGoogle ScholarPubMed
CMS (2016) CMS Resolution 10.11: Power lines and migratory birds. Available at https://www.cms.int/en/document/cms-resolution-1011-power-lines-and-migratory-birds Google Scholar
DeVault, T. L., Blackwell, B. F., Seamans, T. W., Lima, S. L. and Fernández-Juricic, E. (2015) Speed kills: ineffective avian escape responses to oncoming vehicles. Proc. R. Soc. B 282(1801): 20142188.CrossRefGoogle ScholarPubMed
Dwyer, J. F., Harness, R.E. and Donohue, K. (2014) Predictive model of avian electrocution risk on overhead power lines. Conserv. Biol. 28: 159-68.CrossRefGoogle ScholarPubMed
Dwyer, J. F., Kratz, G. E., Harness, R. E. and Little, S. S. (2015) Critical dimensions of raptors on electric utility poles. J. Raptor Res. 49: 210216.CrossRefGoogle Scholar
Dwyer, J. F., Tincher, M. C., Harness, R. E. and Kratz, G. E. (2016a) Testing a supplemental perch designed to prevent raptor electrocution on electric power poles. Northwest. Nat. 97: 16.CrossRefGoogle Scholar
Dwyer, J. F., Tincher, M. C., Harness, R. E. and Kratz, G. E. (2016b) Successful use of a perch deterrent to manipulate raptor perching on model power poles. Colo. Birds. 50: 166174.Google Scholar
Dzialak, M. R., Carter, K. M. and Lacki, M. J. (2007) Perch site selection by reintroduced peregrine falcons Falco peregrinus . Wildl. Biol. 13: 225230.CrossRefGoogle Scholar
Fleming, P. A. and Bateman, P. W. (2018) Novel predation opportunities in anthropogenic landscapes. Anim. Behav. 138: 145155.CrossRefGoogle Scholar
García, V. (2013) Guía de identificación de rapaces ibéricas por restos óseos (1.ª parte, grandes rapaces). Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente.Google Scholar
García, V. (2017) Guía de identificación de rapaces ibéricas por restos óseos (2.ª parte, rapaces medianas diurnas). Madrid: Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente.Google Scholar
González, L. M., Margalida, A., Manosa, S., Sánchez, R., Oria, J., Molina, J. I., Aranda, A. and Prada, L. (2007) Causes and spatio-temporal variations of non-natural mortality in the vulnerable Spanish imperial eagle Aquila adalberti during a recovery period. Oryx 41: 495502.CrossRefGoogle Scholar
Guil, F. (2014a) Evaluación de la efectividad de la corrección de tendidos eléctricos del proyecto LIFE07/NAT/E/00742 “Conservación de especies prioritarias del monte mediterráneo en Castilla-La Mancha”. Annex A.7.2.6.1. Final LIFE report. Madrid: Fundación CBD-Hábitat-Junta de Comunidades de Castilla-La Mancha. Available at http://www.priorimancha.es/documentos_finales/Anexo_7.2.6.1_Seguimiento_Tendidos-FINAL.pdf Google Scholar
Guil, F. (2014b) Estudio de integración de necesidades de financiación impuestas por el R.D. 1432/2008, con el mecanismo previsto a través de un Plan de Impulso al Medio Ambiente. Madrid: Tragsatec-Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente. Available at https://www.miteco.gob.es/es/biodiversidad/temas/conservacion-de-especies/estudioincidenciatendidoscambioclimatico_tcm30-379323.pdf Google Scholar
Guil, F., Colomer, M. À., Moreno-Opo, R. and Margalida, A. (2015) Space–time trends in Spanish bird electrocution rates from alternative information sources. Global Ecol. Conserv. 3: 379388.CrossRefGoogle Scholar
Guil, F., Fernández-Olalla, M., Moreno-Opo, R., Mosqueda, I., García, M. E., Aranda, A., Arredondo, A., Guzmán, J., Oria, J., Margalida, A. and González, L.M. (2011) Minimising mortality in endangered raptors due to power lines: the importance of spatial aggregation to optimize application of mitigation measures. PLoS One 6: e28212.CrossRefGoogle ScholarPubMed
Guil, F., Soria, M. Á., Margalida, A. and Pérez-García, J. M. (2018) Wildfires as collateral effects of wildlife electrocution: An economic approach to the situation in Spain in recent years. Sci. Total Environ. 625: 460469.CrossRefGoogle ScholarPubMed
Hernández‐Lambraño, R. E., Sánchez‐Agudo, J. Á. and Carbonell, R. (2018) Where to start? Development of a spatial tool to prioritise retrofitting of power line poles that are dangerous to raptors. J. Appl. Ecol. 55: 26852697.CrossRefGoogle Scholar
Infante, O. and Peris, S. (2003) Bird nesting on electric power supports in northwestern Spain. Ecol. Eng. 20: 321326.CrossRefGoogle Scholar
INSHT (2011) Arco eléctrico: estimación de la energía calorífica incidente sobre un trabajador. Notas Técnicas de Prevención 904.Google Scholar
Janss, G. F. and Ferrer, M. (1999) Mitigation of raptor electrocution on steel power poles. Wildl. Soc. Bull. 27: 263273.Google Scholar
Janss, G. F. E. (2000) Avian mortality from power lines: a morphologic approach of a species-specific mortality. Biol. Conserv. 95: 353359.CrossRefGoogle Scholar
Klinke, A. and Renn, O. (2001) Precautionary principle and discursive strategies: classifying and managing risks. J. Risk Res. 4: 159173.CrossRefGoogle Scholar
Knight, R. L. and Kawashima, J. Y. (1993) Responses of raven and red-tailed hawk populations to linear right-of-ways. J. Wildl. Manage. 57: 266271.CrossRefGoogle Scholar
Lammers, W. M. and Collopy, M. W. (2007) Effectiveness of avian predator perch deterrents on electric transmission lines. J. Wildl. Manage. 71: 27522758.CrossRefGoogle Scholar
Lehman, R. N., Kennedy, P. L. and Savidge, J. A. (2007) The state of the art in raptor electrocution research: a global review. Biol. Conserv. 136: 159174.CrossRefGoogle Scholar
Madroño, A., González, G. G., and Atienza, J. C. (Eds.). (2004) Libro rojo de las aves de España. Madrid: Organismo Autónomo Parques Nacionales.Google Scholar
McClure, C. J., Westrip, J. R., Johnson, J. A., Schulwitz, S. E., Virani, M. Z., Davies, R., Symes, A., Wheatley, H., Thorstrom, R., Amar, A., Buij, R., Jones, V. R., Williams, N. P., Buechley, E. R. and Butchart, S. H. M. (2018) State of the world’s raptors: Distributions, threats, and conservation recommendations. Biol. Conserv. 227: 390402.CrossRefGoogle Scholar
Miller, E. A., ed. (2012) Minimum standards for wildlife rehabilitation. 4th edition. St. Cloud (MN): National Wildlife Rehabilitators Association.Google Scholar
Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M. S., Packer, C. and Clune, J. (2018) Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Ac. Sci. 115: E5716E5725.CrossRefGoogle ScholarPubMed
O’Brien, T. G. and Kinnaird, M. F. (2008) A picture is worth a thousand words: the application of camera trapping to the study of birds. Bird Conserv. Internatn. 18(S1): S144S162.CrossRefGoogle Scholar
O’Rourke, C. T., Pitlik, T., Hoover, M., and Fernández-Juricic, E. (2010) Hawk eyes II: diurnal raptors differ in head movement strategies when scanning from perches. PLoS One 5: e12169.CrossRefGoogle ScholarPubMed
Pérez-García, J. M., Morales-Reyes, Z., Naves-Alegre, L., Sánchez-Zapata, J. A. and Sebastián-González, J. (2019) Mortalidad de aves por electrocución y colisión en líneas eléctricas en el desierto del Gobi. P. 121 in Libro de Resúmenes del VII Congreso Ibérico y XXIV Español de Ornitología. Madrid: SEO/BirdLife.Google Scholar
R Core Team. (2017) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Real, J., Grande, J. M., Mañosa, S., and Sánchez-Zapata, J. A. (2001) Causes of death in different areas for Bonelli’s Eagle Hieraaetus fasciatus in Spain. Bird Study 48: 221228.CrossRefGoogle Scholar
Rutz, C. (2006) Home range size, habitat use, activity patterns and hunting behaviour of urban-breeding Northern Goshawks Accipiter gentilis . Ardea 94: 185.Google Scholar
Sánchez, A., Bueno, A., Rodríguez, J., González, F., Álvarez, A., Ramos, V. and Caldera, J. (1996) Nidificación de aves en líneas eléctricas en Extremadura: problemática y manejo de conservación. Pp. 207-213 in Segundas jornadas sobre líneas eléctricas y Medio ambiente. Madrid: REE, Red Eléctrica Google Scholar
Schnell, G. D. (1968) Differential habitat utilization by wintering Rough-legged and Red-tailed Hawks. Condor 70: 373377.CrossRefGoogle Scholar
Seamans, T. W., Barras, S. C. and Bernhardt, G. E. (2007) Evaluation of two perch deterrents for starlings, blackbirds and pigeons. Int. J. Pest Manage. 53: 4551.CrossRefGoogle Scholar
Sheffield, L. M., Crait, J. R., Edge, W. D. and Wang, G. (2001) Response of American kestrels and gray-tailed voles to vegetation height and supplemental perches. Can. J. Zool. 79: 380385.CrossRefGoogle Scholar
Slater, S. J., Dwyer, J. F. and Murgatroyd, M. (2020) Conservation letter: raptors and overhead electrical systems. J. Raptor Res. 54: 198203.CrossRefGoogle Scholar
Soldatini, C., Albores-Barajas, Y. V., Lovato, T., Andreon, A., Torricelli, P., Montemaggiori, A., Corsa, C. and Georgalas, V. (2011) Wildlife strike risk assessment in several Italian airports: lessons from BRI and a new methodology implementation. PLoS. One 6: e28920.CrossRefGoogle Scholar
Steenhof, K., Kochert, M. N., and Roppe, J. A. (1993) Nesting by raptors and common ravens on electrical transmission line towers. J. Wildl. Manage 57: 271281.CrossRefGoogle Scholar
Tarling, R., and Burrows, J. (2004) The nature and outcome of going missing: the challenge of developing effective risk assessment procedures. Int. J. Police Sci. Manage. 6: 1626.CrossRefGoogle Scholar
Tintó, A., Real, J., and Mañosa, S. (2010) Predicting and correcting electrocution of birds in Mediterranean areas. J. Wildl. Manage. 74: 18521862.CrossRefGoogle Scholar
Tomé, R., Dias, M. P., Chumbinho, A. C., and Bloise, C. (2011) Influence of perch height and vegetation structure on the foraging behaviour of Little Owls Athene noctua: how to achieve the same success in two distinct habitats. Ardea 99: 1726.CrossRefGoogle Scholar
United Nations (2018) Accelerating SDG7 achievement. Policy briefs in support of the first SDG7 review at the UN High-level Political Forum 2018. Geneva, Switzerland: United Nations. Available at https://sdgs.un.org/sites/default/files/publications/262818041SDG7_Policy_Brief.pdf Google Scholar
Varland, D. E., Klaas, E. E. and Loughin, T. M. (1993) Use of habitat and perches, causes of mortality and time until dispersal in post-fledging American kestrels (Falco sparverius). J. Field Ornithol. 64: 169178.Google Scholar
Supplementary material: File

Guil et al. supplementary material

Guil et al. supplementary material

Download Guil et al. supplementary material(File)
File 13.2 KB
Supplementary material: PDF

Guil et al. supplementary material

Appendix S1

Download Guil et al. supplementary material(PDF)
PDF 73.9 KB
Supplementary material: PDF

Guil et al. supplementary material

Table S1

Download Guil et al. supplementary material(PDF)
PDF 754.6 KB
Supplementary material: PDF

Guil et al. supplementary material

Table S2

Download Guil et al. supplementary material(PDF)
PDF 135.6 KB
Supplementary material: PDF

Guil et al. supplementary material

Figure S1

Download Guil et al. supplementary material(PDF)
PDF 142.8 KB