Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T03:26:52.441Z Has data issue: false hasContentIssue false

Does transcranial direct current stimulation affect selective visual attention in children with left-sided infantile hemiplegia? A randomized, controlled pilot study

Published online by Cambridge University Press:  10 December 2020

Raed A. Alharbi
Affiliation:
Department of Public Health, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
Saleh A. Aloyuni
Affiliation:
Department of Public Health, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
Faizan Kashoo*
Affiliation:
Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
Mohamed I. Waly
Affiliation:
Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
Harpreet Singh
Affiliation:
Department of Neurology, AIIMS, New Delhi, India
Mehrunnisha Ahmad
Affiliation:
Department of Nursing, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
*
*Corresponding author. Email: f.kashoo@mu.edu.sa
Get access

Abstract

Objective:

Infantile hemiplegia due to brain injury is associated with poor attention span, which critically affects the learning and acquisition of new skills, especially among children with left-sided infantile hemiplegia (LSIH). This study aimed to improve the selective visual attention (SVA) of children with LSIH through transcranial direct current stimulation (tDCS).

Methods:

A total of 15 children participated in this randomized, double-blinded, pilot study; of them, 10 experienced LSIH, and the remaining 5 were healthy age-matched controls. All the children performed the Computerized Stroop Color-Word Test (CSCWT) at baseline, during the 5th and 10th treatment sessions, and at follow-up. The experimental (n = 5) and control groups (n = 5) received tDCS, while the sham group (n = 5) received placebo tDCS. All three groups received cognitive training on alternate days, for 3 weeks, with the aim to improve SVA.

Results:

Two-way repeated measures analysis of variance (ANOVA) showed a statistically significant change in the mean scores of CSCWT between time points (baseline, 5th and 10th sessions, and follow-up) within-subject factor, group (experimental, sham) between-subject factor and interaction (time points X group) (p < 0.005). Furthermore, a one-way repeated measures ANOVA showed significant differences between time point (p < 0.005) for the experimental and control group but not the sham group.

Conclusion:

These pilot results suggest that future research should be conducted with adequate samples to enable conclusions to be drawn.

Type
Articles
Copyright
© Australasian Society for the Study of Brain Impairment 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Asmari, A., Al Moutaery, K., Akhdar, F., & Al Jadid, M. (2006). Cerebral palsy: Incidence and clinical features in Saudi Arabia. Disability and Rehabilitation, 28(22), 13731377. doi: 10.1080/09638280600638083.CrossRefGoogle ScholarPubMed
Bishop, D. V. M. (1988). Can the right hemisphere mediate language as well as the left? A critical review of recent research. Cognitive Neuropsychology, 5(3), 353367. doi: 10.1080/02643298808252941.CrossRefGoogle Scholar
Blagovechtchenski, E., Gnedykh, D., Kurmakaeva, D., Mkrtychian, N., Kostromina, S., & Shtyrov, Y. (2019). Transcranial direct current stimulation (tDCS) of Wernicke’s and Broca’s areas in studies of language learning and word acquisition. Journal of Visualized Experiments: JoVE, 149, e59159. doi: 10.3791/59159.Google Scholar
Chu, S. (2003). Attention deficit hyperactivity disorder (ADHD) part two: Evaluation and intervention. British Journal of Therapy and Rehabilitaiton, 10(6), 254263. doi: 10.12968/bjtr.2003.10.6.13534.CrossRefGoogle Scholar
Coffman, B. A., Trumbo, M. C., & Clark, V. P. (2012). Enhancement of object detection with transcranial direct current stimulation is associated with increased attention. BMC Neuroscience, 13(1), 108. doi: 10.1186/1471-2202-13-108.CrossRefGoogle ScholarPubMed
Davis, N. J. (2019). Ethics of device-based treatments in pediatric neuropsychiatric disorders.In Davis, N. J. (Ed.), Neurotechnology and brain stimulation in pediatric psychiatric and neurodevelopmental disorders (pp. 5581), Elsevier.doi: 10.1016/B978-0-12-812777-3.00004-0.CrossRefGoogle Scholar
dos Santos Assef, E. C., Capovilla, A. G. S., & Capovilla, F. C. (2007). Computerized Stroop test to assess selective attention in children with attention deficit hyperactivity disorder. The Spanish Journal of Psychology, 10(1), 3340. doi: 10.1017/s1138741600006296.CrossRefGoogle Scholar
Fiene, M., Rufener, K. S., Kuehne, M., Matzke, M., Heinze, H.-J., & Zaehle, T. (2018). Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis. Journal of Neurology, 265(3), 607617.doi: 10.1007/s00415-018-8754-6.CrossRefGoogle ScholarPubMed
Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., & Paulus, W. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166(1), 2330. doi: 10.1007/s00221-005-2334-6.CrossRefGoogle ScholarPubMed
Funnell, E., & Pitchford, N. J. (2016). Reading disorders and weak verbal IQ following left hemisphere stroke in children. In Acquired language disorders in adulthood and childhood: Selected works of Elaine Funnell, vol. 193.Google Scholar
Giordano, J., Bikson, M., Kappenman, E. S., Clark, V. P., Coslett, H. B., Hamblin, M. R., & McKinley, R. A. (2017). Mechanisms and effects of transcranial direct current stimulation. Dose-Response, 15(1), 1559325816685467. doi: 10.1177/1559325816685467.CrossRefGoogle ScholarPubMed
Gkantidis, N., & Halazonetis, D. J. (2011). Morphological integration between the cranial base and the face in children and adults. Journal of Anatomy, 218(4), 426438. doi: 10.1111/j.1469-7580.2011.01346.x.CrossRefGoogle ScholarPubMed
Gualtieri, C. T., & Johnson, L. G. (2006). Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs. Archives of Clinical Neuropsychology, 21(7), 623643. doi: 10.1016/j.acn.2006.05.007.CrossRefGoogle ScholarPubMed
Ho, K.-A., Taylor, J. L., Chew, T., Gálvez, V., Alonzo, A., Bai, S., & Loo, C. K. (2016). The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: Evidence from single and repeated sessions. Brain Stimulation, 9(1), 17. doi: 10.1016/j.brs.2015.08.003.CrossRefGoogle ScholarPubMed
Hsu, W.-Y., Ku, Y., Zanto, T. P., & Gazzaley, A. (2015). Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta-analysis. Neurobiology of Aging, 36(8), 23482359. doi: 10.1016/j.neurobiolaging.2015.04.016.CrossRefGoogle ScholarPubMed
Iyer, M. B., Mattu, U., Grafman, J., Lomarev, M., Sato, S., & Wassermann, E. M. (2005). Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology, 64(5), 872875. doi: 10.1212/01.WNL.0000152986.07469.E9.CrossRefGoogle ScholarPubMed
Jacobson, L., Koslowsky, M., & Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: A meta-analytical review. Experimental Brain Research, 216(1), 110. doi: 10.1007/s00221-011-2891-9.CrossRefGoogle ScholarPubMed
Kashoo, F., & Ahmad, M. (2018). Challenge is the key to stroke rehabilitation. Biomedical Research, 29(21), 37903791. doi: 10.4066/biomedicalresearch.29-18-1076.CrossRefGoogle Scholar
Kashoo, F. Z., & Ahmad, M. (2019). Effect of sensory integration on attention span among children with infantile hemiplegia. International Journal of Health Sciences, 13(3), 2933.Google ScholarPubMed
Kessler, S. K., Minhas, P., Woods, A. J., Rosen, A., Gorman, C., & Bikson, M. (2013). Dosage considerations for transcranial direct current stimulation in children: A computational modeling study. PloS One, 8(9), e76112. doi: org/10.1371/journal.pone.0076112.CrossRefGoogle ScholarPubMed
Knotkova, H., Nitsche, M. A., Bikson, M., & Woods, A. J. (2019). Practical guide to transcranial direct current stimulation: Principles, procedures and applications. Springer.CrossRefGoogle Scholar
Kroenke, K., Spitzer, R. L., Williams, J. B. W., & Löwe, B. (2010). The patient health questionnaire somatic, anxiety, and depressive symptom scales: A systematic review. General Hospital Psychiatry, 32(4), 345359. doi: 10.1016/j.genhosppsych.2010.03.006.CrossRefGoogle ScholarPubMed
Maehler, C., & Schuchardt, K. (2016). Working memory in children with specific learning disorders and/or attention deficits. Learning and Individual Differences, 49, 341347. doi: 10.1016/j.lindif.2016.05.007.CrossRefGoogle Scholar
Martin, D. M., Moffa, A., Nikolin, S., Bennabi, D., Brunoni, A. R., Flannery, W., …Padberg, F. (2018). Cognitive effects of transcranial direct current stimulation treatment in patients with major depressive disorder: An individual patient data meta-analysis of randomised, sham-controlled trials. Neuroscience & Biobehavioral Reviews, 90, 137145. doi: 10.1016/j.neubiorev.2018.04.008.CrossRefGoogle ScholarPubMed
Mattai, A., Miller, R., Weisinger, B., Greenstein, D., Bakalar, J., Tossell, J., …Gogtay, N. (2011). Tolerability of transcranial direct current stimulation in childhood-onset schizophrenia. Brain Stimulation, 4(4), 275280. doi: 10.1016/j.brs.2011.01.001.CrossRefGoogle ScholarPubMed
McKissock, W. (1953). Infantile hemiplegia. SAGE Publications.CrossRefGoogle ScholarPubMed
Metuki, N., Sela, T., & Lavidor, M. (2012). Enhancing cognitive control components of insight problems solving by anodal tDCS of the left dorsolateral prefrontal cortex. Brain Stimulation, 5(2), 110115. doi: 10.1016/j.brs.2012.03.002.CrossRefGoogle ScholarPubMed
Miller, F., & Bachrach, S. J. (2017). Cerebral palsy: A complete guide for caregiving. Baltimore, Maryland: JHU Press.Google Scholar
Miniussi, C., Cappa, S. F., Cohen, L. G., Floel, A., Fregni, F., Nitsche, M. A., & Priori, A. (2008). Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimulation, 1(4), 326336. doi: 10.1016/j.brs.2008.07.002.CrossRefGoogle ScholarPubMed
Minshew, N. J., Turner, C. A., & Goldstein, G. (2005). The application of short forms of the Wechsler Intelligence scales in adults and children with high functioning autism. Journal of Autism and Developmental Disorders, 35(1), 4552. doi: 10.1007/s10803-004-1030-x.CrossRefGoogle ScholarPubMed
Moliadze, V., Schmanke, T., Andreas, S., Lyzhko, E., Freitag, C. M., & Siniatchkin, M. (2015). Stimulation intensities of transcranial direct current stimulation have to be adjusted in children and adolescents. Clinical Neurophysiology, 126(7), 13921399. doi: 10.1016/j.clinph.2014.10.142.CrossRefGoogle ScholarPubMed
Näätänen, R. (2018). Attention and brain function. Abingdon: Routledge.Google Scholar
Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x.CrossRefGoogle ScholarPubMed
Osika, W., Friberg, P., & Wahrborg, P. (2007). A new short self-rating questionnaire to assess stress in children. International Journal of Behavioural Medicine, 14, 108117. doi: 10.1007/BF03004176.CrossRefGoogle ScholarPubMed
Panteliadis, C. P., & Vassilyadi, P. (2018). Cerebral palsy: A historical review. In Cerebral palsy (pp. 112). Switzerland AG: Springer.CrossRefGoogle Scholar
Papazova, I., Strube, W., Becker, B., Henning, B., Schwippel, T., Fallgatter, A. J., …Plewnia, C. (2018). Improving working memory in schizophrenia: Effects of 1 mA and 2 mA transcranial direct current stimulation to the left DLPFC. Schizophrenia Research, 202, 203209. doi: 10.1016/j.schres.2018.06.032.CrossRefGoogle Scholar
Salih, M. A., Abdel-Gader, A.-G. M., Al-Jarallah, A. A., Kentab, A. Y., Alorainy, I. A., Hassan, H. H., …Al-Nasser, M. N. (2006). Stroke in Saudi children. Epidemiology, clinical features and risk factors. Saudi Medical Journal, 27(3), 1220.Google ScholarPubMed
San Luis, C., López de la Llave, A., & Pérez-Llantada, M. C. (2013). Training to improve selective attention in children using neurofeedback through play. Revista de Psicopatología y PsicologíaClínica, 18(3), 209216. doi: 10.5944/rppc.vol.18.num.3.2013.12921.CrossRefGoogle Scholar
Saunders, N., Downham, R., Turman, B., Kropotov, J., Clark, R., Yumash, R., & Szatmary, A. (2015). Working memory training with tDCS improves behavioral and neurophysiological symptoms in pilot group with post-traumatic stress disorder (PTSD) and with poor working memory. Neurocase, 21(3), 271278. doi: 10.1080/13554794.2014.890727.CrossRefGoogle ScholarPubMed
Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. NatureNeuroscience, 6(3), 309. doi: 10.1038/nn1008.Google ScholarPubMed
Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17(1), 3753. doi: 10.1177/1073858410386614.CrossRefGoogle ScholarPubMed
Tortella, G., Casati, R., Aparicio, L. V. M., Mantovani, A., Senço, N., D’Urso, G., …Muszkat, D. (2015). Transcranial direct current stimulation in psychiatric disorders. World Journal of Psychiatry, 5(1), 88. doi: 10.5498/wjp.v5.i1.88.CrossRefGoogle ScholarPubMed
Utz, K. S., Dimova, V., Oppenländer, K., & Kerkhoff, G. (2010). Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—a review of current data and future implications. Neuropsychologia, 48(10), 27892810. doi: 10.1016/j.neuropsychologia.2010.06.002.CrossRefGoogle ScholarPubMed
Valvano, J., & Rapport, M. J. (2006). Activity-focused motor interventions for infants and young children with neurological conditions. Infants & Young Children, 19(4), 292307. doi: 10.1097/00001163-200610000-00003.CrossRefGoogle Scholar
Zmigrod, S. (2014). The role of the parietal cortex in multisensory and response integration: Evidence from transcranial direct current stimulation (tDCS). Multisensory Research, 27(2), 161172. doi: 10.1163/22134808-00002449.CrossRefGoogle Scholar