Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T04:05:18.245Z Has data issue: false hasContentIssue false

Effects of whole-body vibration on motor function in patients with Parkinson’s disease: a systematic review and meta-analysis

Published online by Cambridge University Press:  04 December 2020

Chuan He
Affiliation:
Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital Affiliated to Nanjing Medical University, Suzhou, China
Caixia Su
Affiliation:
Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital Affiliated to Nanjing Medical University, Suzhou, China
Wentong Zhang
Affiliation:
Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital Affiliated to Nanjing Medical University, Suzhou, China
Qi Wan*
Affiliation:
Department of Neurological Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
*
*Corresponding author. Email: cnqiwan@126.com
Get access

Abstract

Objective:

To review the effects of whole body vibration for patients with Parkinson’s disease.

Design:

Randomized clinical trials comparing whole body vibration with no vibration or conventional physical therapy for patients with Parkinson’s disease were searched up to July 31, 2019.

Results:

Seven studies with 196 patients were included for quantitative analysis. No significant difference was found between groups in motor score of unified Parkinson’s disease rating scale (UPDRS-III) (WMD [weighted mean difference] = −1.75, 95% CI, −5.40 to 1.90, I2 = 45.8%), functional reach test (SMD [standardized mean difference] = 0.21, 95% CI, −0.29 to 0.71; I2 = 0%), and other balance tests (including Berg balance test and Tinetti score) (SMD = 0.39, 95% CI, −0.01 to 0.80; I2 = 0%). No statistical difference was detected in walking velocity as well (WMD = −0.05, 95% CI, −0.17 to 0.06; I2 = 0%). In contrast, the pooled analysis from four studies on the Time Up and Go test showed favorable results for whole body vibration (WMD = −1.59, 95% CI, −2.90 to −0.28, I2 = 0%).

Conclusion:

Whole body vibration may not be beneficial over placebo or conventional physical therapy in overall motor function, balance, and walking velocity in patients with Parkinson’s disease. However, it might have positive effects on sit to stand transitions or turning.

Type
Review Article
Copyright
© Australasian Society for the Study of Brain Impairment 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, M. M., Xu, Z., & Tan, L. C. (2018). Epidemiology of Parkinson’s disease-East vs. west. Movement Disorders Clinical Practice, 5, 1428. doi: 10.1002/mdc3.12568.CrossRefGoogle Scholar
Alashram, A. R., Padua, E., & Annino, G. (2019). Effects of whole body vibration on motor impairments in patients with neurological disorders: A systematic review. American Journal of Physical Medicine & Rehabilitation, 98, 10841098. doi: 10.1097/PHM.0000000000001252.CrossRefGoogle ScholarPubMed
Antonini, A., & Obeso, J. A. (2018). DBS for Parkinson’s disease with behavioural disturbances. The Lancet Neurology, 17, 195197. doi: 10.1016/S1474-4422(18)30044-9.CrossRefGoogle ScholarPubMed
Arias, P., Chouza, M., Vivas, J., & Cudeiro, J. (2009). Effect of whole body vibration in Parkinson’s disease: A controlled study. Movement Disorders, 24, 891898. doi: 10.1002/mds.22468.CrossRefGoogle ScholarPubMed
Berghuis, E., VanHarten, B., VanKesteren-Biegstraaten, M., Rutgers, W., & Verwey, N. (2018). Parkinson kinetic graph: Are motor fluctuations in Parkinson disease related with disease duration? Advances in Parkinson’s Disease, 7, 16. doi: 10.4236/apd.2018.71001.CrossRefGoogle Scholar
Cheng, F. Y., Yang, Y. R., Wang, C. J., Wu, Y. R., Cheng, S. J., Wang, H. C., & Wang, R. Y. (2014). Factors influencing turning and its relationship with falls in individuals with Parkinson’s disease. PloS One, 9, e93572. doi: 10.1371/journal.pone.0093572.CrossRefGoogle ScholarPubMed
Chouza, M., Arias, P., Viñas, S., & Cudeiro, J. (2011). Acute effects of whole-body vibration at 3, 6, and 9 hz on balance and gait in patients with Parkinson’s disease. Movement Disorders, 26, 920921. doi: 10.1002/mds.23582.CrossRefGoogle Scholar
de Almeida Marcelino, A. L., Horn, A., Krause, P., Kühn, A. A., & Neumann, W. J. (2019). Subthalamicneuromodulation improves short-term motor learning in Parkinson’s disease. Brain, 142, 21982206. doi: 10.1093/brain/awz152.CrossRefGoogle ScholarPubMed
de Morton, N. A. (2009). The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. The Australian Journal of Physiotherapy, 55, 129133. doi: 10.1016/s0004-9514(09)70043-1.CrossRefGoogle ScholarPubMed
de Souza Fortaleza, A. C., Mancini, M., Carlson-Kuhta, P., King, L. A., Nutt, J. G., Chagas, E. F., Freitas Junior, I. F., …Horak, F. B. (2017). Dual task interference on postural sway, postural transitions and gait in people with Parkinson’s disease and freezing of gait. Gait Posture, 56, 7681. doi: 10.1016/j.gaitpost.2017.05.006.CrossRefGoogle Scholar
Delecluse, C., Roelants, M., & Verschueren, S. (2003). Strength increase after whole-body vibration compared with resistance training. Medicine and Science in Sports and Exercise, 35, 10331041. doi: 10.1249/01.MSS.0000069752.96438.B0.CrossRefGoogle ScholarPubMed
Ebersbach, G., Edler, D., Kaufhold, O., & Wissel, J. (2008). Whole body vibration vs. conventional physiotherapy to improve balance and gait in Parkinson’s disease. Archives of Physical Medicine and Rehabilitation, 89, 399403. doi: 10.1016/j.apmr.2007.09.031.CrossRefGoogle Scholar
Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315, 629634. doi: 10.1136/bmj.315.7109.629.CrossRefGoogle ScholarPubMed
Flamez, A., Wiels, W., Van Schuerbeek, P., De Mey, J., De Keyser, J., & Baeken, C. (2019). The influence of one session of Low Frequency rTMS on pre-Supplementary Motor Area metabolites in late stage Parkinson’s disease. Clinical Neurophysiology, 130, 12921298. doi: 10.1016/j.clinph.2019.04.720.CrossRefGoogle ScholarPubMed
Gaßner, H., Janzen, A., Schwirtz, A., & Jansen, P. (2014). Random whole body vibration over 5 weeks leads to effects similar to placebo: A controlled study in Parkinson’s disease. Parkinsons Disease, 2014, 386495. doi: 10.1155/2014/386495.CrossRefGoogle Scholar
Haas, C. T., Buhlmann, A., Turbanski, S., & Schmidtbleicher, D. (2006b). Proprioceptive and sensorimotor performance in Parkinson’s disease. Research in Sports Medicine, 14, 273287. doi: 10.1080/15438620600985902.CrossRefGoogle ScholarPubMed
Haas, C. T., Turbanski, S., Kessler, K., & Schmidtbleicher, D. (2006a). The effects of random whole-body-vibration on motor symptoms in Parkinson’s disease. Neurorehabilitation, 21, 2936. doi: 10.3233/NRE-2006-21105.CrossRefGoogle Scholar
Hanna, J. A., Scullen, T., Kahn, L., Mathkour, M., Gouveia, E. E., Garces, J., … Smith, R. D. (2018). Comparison of elderly and young patient populations treated with deep brain stimulation for Parkinson’s disease: Long-term outcomes with up to 7 years of follow-up. Journal of Neurosurgery, 131, 807812. doi: 10.3171/2018.4.JNS171909.CrossRefGoogle Scholar
Higgins, J. P. T., & Green, S. (2011). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration. Retrieved from www.handbook.cochrane.org.Google Scholar
Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327, 557560. doi: 10.1136/bmj.327.7414.557.CrossRefGoogle ScholarPubMed
Jacobs, J. V., Lou, J. S., Kraakevik, J. A., & Horak, F. B. (2009). The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson’s disease. Neuroscience, 164, 877885. doi: 10.1016/j.neuroscience.2009.08.002.CrossRefGoogle ScholarPubMed
Kapur, S. S., Stebbins, G. T., & Goetz, C. G. (2012). Vibration therapy for Parkinson’s disease: Charcot’s studies revisited. Journal of Parkinson’s Disease, 2, 2327. doi: 10.3233/JPD-2012-12079.CrossRefGoogle ScholarPubMed
Kaut, O., Allert, N., Coch, C., Paus, S., Grzeska, A., Minnerop, M., & Wüllner, U. (2011). Stochastic resonance therapy in Parkinson’s disease. Neurorehabilitation, 28, 353358. doi: 10.3233/NRE-2011-0663.CrossRefGoogle ScholarPubMed
Kaut, O., Brenig, D., Marek, M., Allert, N., & Wüllner, U. (2016). Postural stability in Parkinson’s disease patients is improved after stochastic resonance therapy. Parkinsons Disease, 2016, 7948721. doi: 10.1155/2016/7948721.Google ScholarPubMed
King, L. K., Almeida, Q. J., & Ahonen, H. (2009). Short-term effects of vibration therapy on motor impairments in Parkinson’s disease. Neurorehabilitation, 25, 297306. doi: 10.3233/NRE-2009-0528.CrossRefGoogle ScholarPubMed
Mezzarobba, S., Grassi, M., Valentini, R., & Bernardis, P. (2018). Postural control deficit during Sit-To-Walk in patients with Parkinson’s Disease and Freezing of Gait. Gait & Posture, 61, 325330. doi: 10.1016/j.gaitpost.2018.01.032.CrossRefGoogle ScholarPubMed
Mi, T. M., Garg, S., Ba, F., Liu, A. P., Wu, T., Gao, L. L., … McKeown, M. J. (2019). High-frequency rTMS over the supplementary motor area improves freezing of gait in Parkinson’s disease: A randomized controlled trial. Parkinsonism & Related Disorders, 68, 8590. doi: 10.1016/j.parkreldis.2019.10.009.CrossRefGoogle ScholarPubMed
Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. (2003). The Unified Parkinson’s Disease Rating Scale (UPDRS): Status and recommendations. Movement Disorders, 18, 738750. doi: 10.1002/mds.10473.CrossRefGoogle Scholar
Petzinger, G. M., Fisher, B. E., McEwen, S., Beeler, J. A., Walsh, J. P., & Jakowec, M. W. (2013). Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurology, 12, 716726. doi: 10.1016/S1474-4422(13)70123-6.CrossRefGoogle ScholarPubMed
Podsiadlo, D., & Richardson, S. (1991). The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 39, 142148. doi: 10.1111/j.1532-5415.1991.tb01616.x.CrossRefGoogle Scholar
Schrag, A., & Quinn, N. (2000). Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain A Journal of Neurology, 123, 2297. doi: 10.1093/brain/123.11.2297.CrossRefGoogle ScholarPubMed
Sharififar, S., Coronado, R. A., Romero, S., Azari, H., & Thigpen, M. (2014). The effects of whole body vibration on mobility and balance in Parkinson disease: A systematic review. Iranian Journal of Medical Sciences, 39, 318326.Google ScholarPubMed
SitjàRabert, M., Rigau Comas, D., Fort Vanmeerhaeghe, A., Santoyo Medina, C., Roqué i Figuls, M., Romero-Rodríguez, D., & Bonfill Cosp, X. (2012). Whole-body vibration training for patients with neurodegenerative disease. Cochrane Database of Systematic Reviews, 2, CD009097. doi: 10.1002/14,651,858.CD009097.pub2.CrossRefGoogle Scholar
Stack, E., Jupp, K., & Ashburn, A. (2004). Developing methods to evaluate how people with Parkinson’s Disease turn 180 degrees: An activity frequently associated with falls. Disability & Rehabilitation, 26, 478484. doi: 10.1080/09638280410001663085.CrossRefGoogle ScholarPubMed
Stranahan, A. M., Khalil, D., & Gould, E. (2007). Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus, 17, 10171022. doi: 10.1002/hipo.20348.CrossRefGoogle ScholarPubMed
Toyoda, C., Ikeda, M., Sakai, K., Omoto, S., Iguchi, Y., Kimura, I., & Abo, M. (2018). Repetitive transcranial magnetic stimulation (rTMS) therapy for Parkinson’s disease (PD). Parkinsonism & Related Disorders, 46, e88. doi: 10.1016/j.parkreldis.2017.11.308.CrossRefGoogle Scholar
Turbanski, S., Haas, C. T., Schmidtbleicher, D., Friedrich, A., & Duisberg, P. (2005). Effects of random whole-body vibration on postural control in Parkinson’s disease. Research in Sports Medicine, 13, 243256. doi: 10.1080/15,438,620,500,222,588.CrossRefGoogle ScholarPubMed
Tysnes, O. B., & Storstein, A. (2017). Epidemiology of Parkinson’s disease. Journal of Neural Transmission, 124, 901905. doi: 10.1007/s00702-017-1686-y.CrossRefGoogle ScholarPubMed
vanDuijnhoven, H. J., Heeren, A., Peters, M. A., Veerbeek, J. M., Kwakkel, G., Geurts, A. C., & Weerdesteyn, V. (2016). Effects of exercise therapy on balance capacity in chronic stroke: Systematic review and meta-analysis. Stroke, 47, 26032610. doi: 10.1161/STROKEAHA.116.013839.CrossRefGoogle Scholar
VanLeeuwen, J. E., Petzinger, G. M., Walsh, J. P., Akopian, G. K., Vuckovic, M., & Jakowec, M. W. (2010). Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Journal of Neuroscience Research, 88, 650668. doi: 10.1002/jnr.22,216.Google ScholarPubMed
Villar-Cheda, B., Sousa-Ribeiro, D., Rodriguez-Pallares, J., Rodriguez-Perez, A. I., Guerra, M. J., & Labandeira-Garcia, J. L. (2009). Aging and sedentarism decrease vascularization and VEGF levels in the rat substantianigra. Implications for Parkinson’s disease. Journal of Cerebral Blood Flow & Metabolism, 29, 230234. doi: 10.1038/jcbfm.2008.127.CrossRefGoogle Scholar
Yang, N. Y., Zhou, D., Chung, R. C., Li-Tsang, C. W., & Fong, K. N. (2013). Rehabilitation interventions for unilateral neglect after stroke: A systematic review from 1997 through 2012. Frontiers in Human Neuroscience, 7, 187. doi: 10.3389/fnhum.2013.00187.CrossRefGoogle Scholar
You, H., Mariani, L. L., Mangone, G., Le Febvre de Nailly, D., Charbonnier-Beaupel, F., & Corvol, J. C. (2018). Molecular basis of dopamine replacement therapy and its side effects in Parkinson’s disease. Cell and Tissue Research, 373, 111135. doi: 10.1007/s00441-018-2813-2.CrossRefGoogle ScholarPubMed
Zhao, Y. J., Wee, H. L., Chan, Y. H., Seah, S. H., Au, W. L., Lau, P. N., … Tan, L. C. (2010). Progression of Parkinson’s disease as evaluated by Hoehn and Yahr stage transition times. Movement Disorders, 25, 710716. doi: 10.1002/mds.22875 CrossRefGoogle ScholarPubMed