No CrossRef data available.
Article contents
Basic science: (JULY 2007)
Published online by Cambridge University Press: 01 September 2007
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
- Type
- Journal Watch
- Information
- Copyright
- Copyright © Cambridge University Press 2007
References
1.Barrett, A, Santangelo, S, Tan, K, Catchpole, S, Roberts, K, Spencer-Dene, B, Hall, D, Scibetta, A, Burchell, J, Verdin, E, Freemont, P, Taylor-Papadimitriou, J. Breast cancer associated transcriptional repressor PLU-1/JARID1B interacts directly with histone deacetylases. Int J Cancer 2007; 121: 265–275.CrossRefGoogle ScholarPubMed
2.Bergman, I, Griffin, JA, Gao, YH, Whitaker-Dowling, P. Treatment of implanted mammary tumors with recombinant vesicular stomatitis virus targeted to Her2/neu. Int J Cancer 2007; 121: 425–430.CrossRefGoogle ScholarPubMed
3.Bocca, C, Bozzo, F, Francica, S, Colombatto, S, Miglietta, A. Involvement of PPAR ϒ and E-cadherin/β-catenin pathway in the antiproliferative effect of conjugated linoleic acid in MCF-7 cells. Int J Cancer 2007; 121: 248–256.CrossRefGoogle ScholarPubMed
4.Budhram-Mahadeo VS, Irshad S, Bowen S, Lee SA, Samady L, Tonini GP, Latchman DS. Proliferation-associated Brn-3b transcription factor can activate cyclin D1 expression in neuroblastoma and breast cancer cells. Oncogene: 10.1038/sj.onc.1210621.Google Scholar
5.Bultman SJ, Herschkowitz JI, Godfrey V, Gebuhr TC, Yaniv M, Perou CM, Magnuson T. Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene: 10.1038/sj.onc.1210664.Google Scholar
6.Cascio S, Bartella V, Auriemma A, Johannes GJ, Russo A, Giordano A, Surmacz E. Mechanism of leptin expression in breast cancer cells: role of hypoxia-inducible factor-1α. Oncogene: 10.1038/sj.onc.1210660.Google Scholar
7.Chang TW, Chen CC, Chen KY, Su JH, Chang JH, Chang MC. Ribosomal phosphoprotein P0 interacts with GCIP and overexpression of P0 is associated with cellular proliferation in breast and liver carcinoma cells. Oncogene: 10.1038/sj.onc.1210651.Google Scholar
8.Chen, CS, Zhou, ZM, Ross, JS, Zhou, W, Dong, JT. The amplified WWP1 gene is a potential molecular target in breast cancer. Int J Cancer 2007; 121: 80–87.CrossRefGoogle ScholarPubMed
9.Elsheikh S, Green A, Aleskandarany M, Grainge M, Paish C, Lambros M, Reis-Filho J, Ellis I. CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat: 10.1007/s10549-007-9659-8.Google Scholar
10.Feng, YM, Sun, BC, Li, XQ, Zhang, L, Niu, Y, Xiao, CH, Ning, LS, Fang, Z, Wang, YL, Zhang, LN, Cheng, J, Zhang, W, Hao, XS. Differentially expressed genes between primary cancer and paired lymph node metastases predict clinical outcome of node-positive breast cancer patients. Breast Cancer Res Treat 2007; 103: 319–329.CrossRefGoogle ScholarPubMed
11.Hao, L, ElShamy, WM. BRCA1-IRIS activates cyclin D1 expression in breast cancer cells by downregulating the JNK phosphatase DUSP3/VHR. Int J Cancer 2007; 121: 39–46.CrossRefGoogle ScholarPubMed
12.Hatsell, S, Frost, A. Hedgehog Signaling in Mammary Gland Development and Breast Cancer. J Mammary Gland Biol Neoplasia 2007; 12: 163–173.CrossRefGoogle ScholarPubMed
13.John, EM, Phipps, AI, Knight, JA, Milne, RL, Dite, GS, Hopper, JL, Andrulis, IL, Southey, M, Giles, GG, West, DW, Whittemore, AS. Medical radiation exposure and breast cancer risk: findings from the Breast Cancer Family Registry. Int J Cancer 2007; 121: 386–394.CrossRefGoogle ScholarPubMed
14.Katz, M, Amit, I, Citri, A, Shay, T, Carvalho, S, Lavi, S, Milanezi, F, Lyass, L, Amariglio, N, Jacob-Hirsch, J, Ben-Chetrit, N, Tarcic, G, Lindzen, M, Avraham, R, Liao, YC, Trusk, P, Lyass, A, Rechavi, G, Spector, NL, Lo, SH, Schmitt, F, Bacus, SS, Yarden, Y. A reciprocal tensin-3-cten switch mediates EGF-driven mammary cell migration. Nat Cell Biol 2007; 9: 961–969.CrossRefGoogle ScholarPubMed
15.Lien HC, Hsiao YH, Lin YS, Yao YT, Juan HF, Kuo WH, Hung MC, Chang KJ, Hsieh FJ. Molecular signatures of metaplastic carcinoma of the breast by large-scale transcriptional profiling: identification of genes potentially related to epithelial-mesenchymal transition. Oncogene: 10.1038/sj.onc.1210593.Google Scholar
16.Liu, X, Holstege, H, van der Gulden, H, Treur-Mulder, M, Zevenhoven, J, Velds, A, Kerkhoven, RM, van Vliet, MH, Wessels, LFA, Peterse, JL, Berns, A, Jonkers, J. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci USA 2007; 104: 12111–12116.CrossRefGoogle ScholarPubMed
17.Marangoni, E, Vincent-Salomon, A, Auger, N, Degeorges, A, Assayag, F, de Cremoux, P, De Plater, L, Guyader, C, De Pinieux, G, Judde, JG, Rebucci, M, Tran-Perennou, C, Sastre-Garau, X, Sigal-Zafrani, B, Delattre, O, Dieras, V, Poupon, MF. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 2007; 13: 3989–3998.CrossRefGoogle ScholarPubMed
18.Masciari S, Larsson N, Senz J, Boyd N, Kaurah P, Kandel MJ, Harris LN, Pinheiro HC, Troussard A, Miron P, Tung N, Oliveira C, Collins L, Schnitt S, Garber JE, Huntsman D. Germline E-Cadherin mutations in familial lobular breast cancer. J Med Genet: 10.1136/jmg.2007.051268.Google Scholar
19.Muss, HB, Bunn, JY, Crocker, A, Plaut, K, Koh, J, Heintz, N, Rincon, M, Weaver, DL, Tam, D, Beatty, B, Kaufman, P, Donovan, M, Verbel, D, Weiss, L. Cyclin D-1, interleukin-6, HER-2/neu, transforming growth factor receptor-II and prediction of relapse in women with early stage, hormone receptor-positive breast cancer treated with tamoxifen. Breast J 2007; 13: 337–345.CrossRefGoogle ScholarPubMed
20.Pierce, JP, Natarajan, L, Caan, BJ, Parker, BA, Greenberg, ER, Flatt, SW, Rock, CL, Kealey, S, Al-Delaimy, WK, Bardwell, WA, Carlson, RW, Emond, JA, Faerber, S, Gold, EB, Hajek, RA, Hollenbach, K, Jones, LA, Karanja, N, Madlensky, L, Marshall, J, Newman, VA, Ritenbaugh, C, Thomson, CA, Wasserman, L, Stefanick, ML. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer—the Women’s Healthy Eating and Living (WHEL) Randomized Trial. JAMA 2007; 298: 289–298.CrossRefGoogle ScholarPubMed
21.Rodriguez, V, Chen, YD, Elkahloun, A, Dutra, A, Pak, E, Chandrasekharappa, S. Chromosome 8 BAC array comparative genomic hybridization and expression analysis identify amplification and overexpression of TRMT12 in breast cancer. Genes Chromosomes Cancer 2007; 46: 694–707.CrossRefGoogle ScholarPubMed
22.Rottenberg, S, Nygren, AOH, Pajic, M, van Leeuwen, FWB, van der Heijden, I, van de Wetering, K, Liu, X, de Visser, KE, Gilhuijs, KG, van Tellingen, O, Schouten, JP, Jonkers, J, Borst, P. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc Natl Acad Sci USA 2007; 104: 12117–12122.CrossRefGoogle Scholar
23.Sahlin, P, Windh, P, Lauritzen, C, Ernanuelsson, M, Gronberg, H, Stenman, G. Women with Saethre-Chotzen syndrome are at increased risk of breast cancer. Genes Chromosomes Cancer 2007; 46: 656–660.CrossRefGoogle ScholarPubMed
24.Shen Q, Uray IP, Li Y, Krisko TI, Strecker TE, Kim HT, Brown PH. The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene: 10.1038/sj.onc.1210643.Google Scholar
25.Veeck J, Chorovicer M, Naami A, Breuer E, Zafrakas M, Bektas N, Duerst M, Kristiansen G, Wild PJ, Hartmann A, Knuechel R, Dahl E. The extracellular matrix protein ITIH5 is a novel prognostic marker in invasive node-negative breast cancer and its aberrant expression is caused by promoter hypermethylation. Oncogene: 10.1038/sj.onc.1210669.Google Scholar
26.Wang, LH, Chan, JLK, Li, W. Rapamycin together with herceptin significantly increased anti-tumor efficacy compared to either alone in ErbB2 over expressing breast cancer cells. Int J Cancer 2007; 121: 157–164.CrossRefGoogle ScholarPubMed
27.Zwart, W, Griekspoor, A, Berno, V, Lakeman, K, Jalink, K, Mancini, M, Neefjes, J, Michalides, R. PKA-induced resistance to tamoxifen is associated with an altered orientation of ERα towards co-activator SRC-1. EMBO J 2007; 26: 3534–3544.CrossRefGoogle ScholarPubMed
You have
Access