Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T06:39:24.975Z Has data issue: false hasContentIssue false

Absence of effects of dietary wheat bran on the activities of some key enzymes of carbohydrate and lipid metabolism in mouse liver and adipose tissue

Published online by Cambridge University Press:  09 March 2007

John C. Stanley
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, Oxford Ox1 3QU
Jacqueline A. Lambadrios
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, Oxford Ox1 3QU
Eric A. Newsholme
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, Oxford Ox1 3QU
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of a 100 g/kg dietary substitution of wheat bran on the body-weight gain, food consumption and faecal dry weight of mice given a high-sucrose diet and on the activities of some key enzymes of carbohydrate and lipid metabolism in liver and adipose tissue were studied.

2. Wheat bran had no effect on body-weight gain, food consumption or faecal dry weight.

3. Wheat bran had no effect on the activities of hepatic glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1. 1.1.44), malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (EC 1. 1. 1.40), ATP-citrate (pro-3S)-lyase (EC 4.1.3.8), pyruvate kinase (EC 2.7.1.40) and fructose-1, 6-bisphosphatase (EC 3.1.3.11). The activity of hepatic 6-phosphofructokinase (EC 2.7.1.11) increased but only when expressed on a body-weight basis.

4. Wheat bran had no effect on the activities of adipose tissue glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+), (ATP-citrate igro-3S)-lyase, hexokinase (EC 2. 7. 1. 1), 6-phosphofructokinase and pyruvate kinase.

5. These results suggest that unlike guar gum and bagasse, wheat bran does not change the flux through some pathways of lipogenesis in liver and adipose tissue when mice are given high-sucrose diets.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Asp, N. G., Bauer, H. G., Nilsson-Ehle, P., Nyman, M. & Oste, R. (1981). British Journal of Nutrition 46, 385393.CrossRefGoogle Scholar
Bremner, W. F., Brooks, P. M., Third, J. L. H. C. & Lawrie, T. D. V. (1975). British Medical Journal ii, 574.CrossRefGoogle Scholar
Cummings, J. H., Hill, M. J., Jenkins, D. J. A., Pearson, J. R. & Wiggins, H. S. (1976). American Journal of Clinical Nutrition 29, 14681473.CrossRefGoogle Scholar
Cummings, J. H., Southgate, D. A. T., Branch, W. J., Wiggins, H. S., Houston, H., Jenkins, D. J. A., Jivraj, T. & Hill, M. J. (1979). British Journal of Nutrition 41, 477485.CrossRefGoogle Scholar
Denton, R., Bridges, B., Brownsey, R., Evans, G., Hughes, W. & Stansbie, D. (1977). Biochemical Society Transactions 5, 894900.CrossRefGoogle Scholar
Freedland, R. A. (1967). Journal of Nutrition 91, 489495.CrossRefGoogle Scholar
Hollands, M. A. & Cawthorne, M. A. (1981). Biochemical Journal 196, 645647.CrossRefGoogle Scholar
Jefferys, D. B. (1974). Proceedings of the Nutrition Society 33, 11A12A.Google Scholar
Jenkins, D. J. A. (1979). Lancet ii, 12871290.CrossRefGoogle Scholar
Jenkins, D. J. A., Newton, C., Leeds, A. R. & Cummings, J. H. (1975). Lancet i, 11161117.CrossRefGoogle Scholar
Jenkins, D. J. A., Wolever, T. M. S., Leeds, A. R., Gassull, M. A., Haisman, P., Dilawari, J., Goff, D. V., Metz, G. L. & Alberti, K. G. M. M. (1978). British Medical Journal i, 13921394.CrossRefGoogle Scholar
Kay, R. M. & Truswell, A. S. (1977). British Journal of Nutrition 37, 227235.CrossRefGoogle Scholar
Krebs, H. A. & Eggleston, L. V. (1974). Advances in Enzyme Regulation 12, 421434.CrossRefGoogle Scholar
Lowenstein, J. M. (1971). Journal of Biological Chemistry 246, 629632.CrossRefGoogle Scholar
McNeil, N. I., Cummings, J. H. & James, W. P. T. (1978). Gut 19, 819822.CrossRefGoogle Scholar
Martin, B. R. & Denton, R. M. (1970). Biochemical Journal 117, 861877.CrossRefGoogle Scholar
Morris, J. N., Marr, J. W. & Clayton, D. G. (1977). British Medical Journal ii, 13071314.CrossRefGoogle Scholar
O'Moore, R. R., Flanagan, M., McGill, A. R., Wright, E. A., Little, C. & Weir, D. G. (1978). British medical Journal i, 1213.CrossRefGoogle Scholar
Roediger, W. (1980). Gut 21, 793798.CrossRefGoogle Scholar
Rognstad, R. & Katz, J. (1979). Journal of Biological Chemistry 254, 1196911972.CrossRefGoogle Scholar
Salmon, D. M. W., Bowen, N. L. & Hems, D. A. (1974). Biochemical Journal 142, 611618.CrossRefGoogle Scholar
Southgate, D. A. T., Branch, W. J., Hill, M. J., Drasar, B. S., Walters, R. L., Davies, P. S. & McLean Baird, I. (1976). Metabolism 25, 11291135.CrossRefGoogle Scholar
Stanley, J. C. & Newsholme, E. A. (1985 a). British Journal of Nutrition 53, 215222.CrossRefGoogle Scholar
Stanley, J. C. & Newsholme, E. A. (1985 b). British Journal of Nutrition 54, 415420.CrossRefGoogle Scholar
Stephen, A. M. & Cummings, J. H. (1979). Gut 20, 722729.CrossRefGoogle Scholar
Sugden, P. H. & Newsholme, E. A. (1973). Biochemical Journal 134, 97101.CrossRefGoogle Scholar
Trowell, H. C., Southgate, D. A. T., Wolever, T. M. S., Leeds, A. R, Gassull, M. A. & Jenkins, D. J. A. (1976). Lancet i, 967.CrossRefGoogle Scholar
Walters, R. L., McClean Baird, I., Davies, P. S., Hill, M. J., Drasar, B. S., Southgate, D. A. T., Green, J. & Morgan, B. (1975). British Medical Journal ii, 536538.CrossRefGoogle Scholar