Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T06:54:36.232Z Has data issue: false hasContentIssue false

Associative effects between two fibre sources on ileal and overall digestibilities of amino acids, energy and cell-wall components in growing pigs

Published online by Cambridge University Press:  09 March 2007

J. P. Laplace
Affiliation:
Laboratoire de Physiologie de la Nutrition, INRA-Centre de Recherches de Jouy, F-78350 Jouy-en-Josas, France
Beatrice Darcy-Vrillon
Affiliation:
Laboratoire de Physiologie de la Nutrition, INRA-Centre de Recherches de Jouy, F-78350 Jouy-en-Josas, France
J. M. PÉrez
Affiliation:
Station de Recherches Porcines, INRA-St Gilles, F-35590 L'Hermitage, France
Y. Henry
Affiliation:
Station de Recherches Porcines, INRA-St Gilles, F-35590 L'Hermitage, France
Sylvie Giger
Affiliation:
Station de Nutrition et Alimentation, INA-Paris-Grignon, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
D. Sauvant
Affiliation:
Station de Nutrition et Alimentation, INA-Paris-Grignon, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The associative effects of two fibre sources on ileal and overall digestibility of amino acids, energy and cell-wall components were studied by comparing wheat bran and soya-bean hulls in semi-purified diets given to growing pigs.

2. Castrated male pigs were prepared with ileo-rectal anastomosis to measure ileal digestibility, and overall digestibility was measured in pigs without anastomosis.

3. The three diets contained 190 g total fibre/kg dry matter (DM), derived from each fibre source or from a mixture of both fibre sources, so that each source provided half the amount of total fibre, and 170 g crude protein (nitrogen x 6·25)/kg DM by additions of casein.

4. The effects of fibre sources on the ileal digestibility of amino acids were additive for most amino acids; the only significant interactions were found for threonine, methionine and aspartic acid. In contrast with ileal digestibility, systematic negative interactions between fibre sources on overall digestibility of amino acids were noted.

5. There was no interaction between fibre sources in their effects on the digestibility of energy or of cell-wall components, irrespective of the site of digestion. The digestibility values were higher with soya-bean hulls than with wheat bran, especially at the faecal level.

6. It is concluded that ileal digestibility of amino acids provides a better estimate of amino acid availability, as ileal measurements allow a better discrimination between diets than faecal measurements when distinct fibre sources are used alone or in combination at the same total fibre content. In contrast, for energy, the measurement of digestibility at both faecal and ileal levels permits the estimation of the partition of available nutrients between the small and large intestines.

Type
Dietary Polysaccharides: Metabolic Effects
Copyright
Copyright © The Nutrition Society 1989

References

Argenzio, R.A. & Southworth, M. (1975) Sites of organic acid production and absorption in the gastrointestinal tract of the pig. American Journal of Physiology 228, 454460.CrossRefGoogle ScholarPubMed
Bardon, T. & Fioramonti, J. (1983) Nature of the effects of bran on digestive transit time in pigs. British Journal of Nutrition 50, 685690.CrossRefGoogle ScholarPubMed
Collings, G. F., Erickson, J. P., Yokoyama, M. T. & Miller, E. R. (1979) Effect of wheat middlings on fiber digestibility, serum cholesterol and glucose, and fecal bile acids in pigs. Journal of Animal Science 49, 528534.CrossRefGoogle Scholar
Dierick, N., Verkaeke, I., Decuypere, J. & Henderickx, H. K. (1983) Influence de la nature et du niveau des fibres brutes sur la digestibilité iléale et fécale apparente de la matière sèche, des protéines et des acides aminés, et sur la rétention azotée chez les porcs. Revue de l' Agriculture 36, 16911712.Google Scholar
Drochner, W. (1984) Einfluss wechselnder Rohfaser und Pektingehalte im Futter auf einige praecaecale und postileale Verdauungsvorgänge beim wachsenden Schwein Fortschritte in der Tierphysiologie und Tierernährung no. 14. Hamburg: Verlag Paul Parey.Google Scholar
Ecknauer, R., Sircar, B. & Johnson, L. (1981) Effect of dietary bulk on small intestinal morphology and cell renewal in the rat. Gastroenterology 81, 781786.Google Scholar
Ehle, F. R., Jeraci, J. L., Robertson, J. B. & Van Soest, P. J. (1982) The influence of dietary fiber on digestibility, rate of passage and gastrointestinal fermentation in pigs. Journal of Animal Science 55, 10711081.CrossRefGoogle Scholar
ElRayah, A. A. Rayah, A. A. & Labavitch, J. M. (1977) A simplified method for accurate determination of cell-wall uronide content. Journal of Food Biochemistry 1, 361365.Google Scholar
Fioramonti, J. & Bueno, L. (1980) Motor activity in the large intestine of the pig related to dietary fibre and retention time. British Journal of Nutrition 43, 155162.CrossRefGoogle ScholarPubMed
Giger, S., Darcy-Vrillon, B., Mandran, N. & Duby, C. (1987a) Elaboration d'une méthode de test d'interaction digestive entre les composants du régime chez les animaux monogastriques. Annales de Zootechnie 36, 411420.CrossRefGoogle Scholar
Giger, S. & Sauvant, D. (1983) Comparaison de différentes méthodes d'évaluation du coefficient d'utilisation digestive des aliments concentrés par le ruminant. Annales de Zootechnie 32, 215246.CrossRefGoogle Scholar
Giger, S., Thivend, P., Sauvant, D., Dorléans, M. & Journaix, P. (1987b) Etude de l'influence préalable de différentes enzymes amylolytiques sur la teneur en résidu NDF d'aliments du bétail. Annales de Zootechnie 36, 3948.CrossRefGoogle Scholar
Graham, H., Hesselman, K. & Aman, P. (1986) The influence of wheat bran and sugar beet pulp on the digestibility of dietary components in a cereal-based pig diet. Journal of Nutrition 116, 242251.CrossRefGoogle Scholar
Guilloteau, P., Sauvant, D. & Patureau-Mirand, P. (1983) Methods of comparing amino acid composition of proteins: application to undigested proteins in the preruminant calf. Annals of Nutrition and Metabolism 27, 457469.CrossRefGoogle ScholarPubMed
Imoto, S. & Namioka, S. (1978) VFA production in the pig large intestine. Journal of Animal Science 47, 467478.Google Scholar
Institut National de la Recherche Agronomique (1984) L'alimentation des Animaux Monogastriques: Porc, Lapin, Volailles. Paris: INRA.Google Scholar
Jacobs, L. R. (1983) Effects of dietary fiber on mucosal growth and cell proliferation in the small intestine of the rat: a comparison of oat bran, pectin, and guar with total fiber deprivation. American Journal of Clinical Nutrition 37, 954960.CrossRefGoogle Scholar
Jacobs, L. R. & Schneeman, B. O. (1981) Effects of dietary wheat bran on rat colonic structure and mucosal cell growth. Journal of Nutrition 111, 798803.CrossRefGoogle ScholarPubMed
Kass, M. L., Van Soest, P. J. & Pond, W. G. (1980a) Utilization of dietary fiber from alfalfa by growing swine. (2) Volatile fatty acid concentrations in and disappearance from the gastrointestinal tract. Journal of Animal Science 50, 192197.CrossRefGoogle Scholar
Kass, M. L., Van Soest, P. J., Pond, W. G., Lewis, B. & McDowell, R. E. M. (1980b) Utilization of dietary fiber from alfalfa by growing swine. (1) Apparent digestibility of diet components in specific segments of the gastrointestinal tract. Journal of Animal Science 50, 176191.Google Scholar
Keys, J. E. & De Barthe, J. V. (1974) Site and extent of carbohydrate, dry matter, energy and protein digestion and the rate of passage of grain diets in swine. Journal of Animal Science 39, 5762.CrossRefGoogle ScholarPubMed
Kuan, K. K., Stanogias, G. & Dunkin, A. C. (1983) The effect of proportion of cell-wall material from lucerne leaf meal on apparent digestibility, rate of passage and gut characteristics in pigs. Animal Production 36, 201209.Google Scholar
Langlois, A., Corring, T. & Février, C. (1987) Effects of wheat bran on exocrine pancreas secretion in the pig. Reproduction, Nutrition, Développement 27, 929939.CrossRefGoogle ScholarPubMed
Laplace, J. P. (1975) Small bowel resections: exhaustive approach to a theory of adaptation. World Review of Nutrition and Dietetics 23, 1224.CrossRefGoogle ScholarPubMed
Laplace, J. P. (1981). The transit of digesta in the different parts of the digestive tract of the pig. In Nutrition in Health and Disease and International Development. Progress in Clinical and Biological Research, Vol. 77, pp. 847872 [Harper, A. E and Davis, G. K, editors]. New York: Alan Liss.Google Scholar
Laplace, J. P., Darcy-Vrillon, B., Duval-Iflah, Y. & Raibaud, P. (1985a) Proteins in the digesta of the pig: amino acid composition of endogenous, bacterial and fecal fractions. Reproduction, Nutrition, Développement 25, 10831099.CrossRefGoogle ScholarPubMed
Laplace, J. P., Darcy-Vrillon, B. & Picard, M. (1985b) Evaluation de la disponibilité des acides aminés: choix raisonné d'une méthode. Journées de la Recherche Porcine en France 17, 353370.Google Scholar
Lin, F. D., Knabe, D. A. & Tanksley, T. D. (1987) Apparent digestibility of amino acids, gross energy and starch in corn, sorghum, wheat, barley, oat groats and wheat middlings for growing pigs. Journal of Animal Science 64, 16551663.CrossRefGoogle ScholarPubMed
Low, A. G. (1982) Digestibility and availability of amino acids from feedstuffs for pigs: a review. Livestock Production Science 9, 511520.CrossRefGoogle Scholar
Low, A. G. (1985). Role of dietary fibre in pig diets. In Recent Advances in Animal Nutrition, pp. 87112 [Haresign, W and Cole, D. J. A., editors]. London: Butterworths.Google Scholar
Murray, A. G., Fuller, M. F. & Pirie, A. R. (1977). The effect of fibre in the form of various polysaccharides on the apparent digestibility of protein in the pig. Animal Production 24, 139 Abstr.Google Scholar
Pion, R. & Fauconneau, G. (1966). Les acides aminés des protéines alimentaires. Méthodes de dosage et résultats obtenus. In Cahiers de l' AEC no. 6, pp. 155175 [Vigneron, M, editor]. Commentry: AEC.Google Scholar
Rainbird, A. L. (1986) Effect of guar gum on gastric emptying of test meals of varying energy content in growing pigs. British Journal of Nutrition 55, 99109.CrossRefGoogle ScholarPubMed
Rainbird, A. L. & Low, A. G. (1986a) Effect of guar gum on gastric emptying in growing pigs. British Journal of Nutrition 55, 8798.CrossRefGoogle ScholarPubMed
Rainbird, A. L. & Low, A. G. (1986b) Effect of various types of dietary fibre on gastric emptying in growing pigs. British Journal of Nutrition 55, 111121.CrossRefGoogle ScholarPubMed
Rotenberg, S., Eggum, B. O., Hegedus, M. & Jacobsen, I. (1982) The effect of pectin and microbial activity in the digestive tract on faecal excretion of amino acids, fatty acids, thiamin, riboflavin, and niacin in young rats. Acta Agriculturae Scandinavica 32, 309319.CrossRefGoogle Scholar
Saeman, J. F., Moore, W. E., Mitchell, R. L. & Millet, M. A. (1954) Techniques for the determination of pulp constituents by quantitative paper chromatography. Technical Association of the Pulp and Paper Industry 37, 336343.Google Scholar
Sambrook, I. E. (1979) Studies on digestion and absorption in the intestines of growing pigs. (8) Measurements of the flow of total lipid, ADF and VFA. British Journal of Nutrition 42, 279287.CrossRefGoogle Scholar
Sawardeker, J. S., Sloneker, J. H. & Jeanes, A. (1965) Quantitative determination of monosaccharides as their alditol acetates by gas–liquid chromatography. Analytical Chemistry 37, 16021604.CrossRefGoogle Scholar
Schneeman, B. O., Richter, B. D. & Jacobs, L. R. (1982) Response to dietary wheat bran in the exocrine pancreas and intestine of rats. Journal of Nutrition 112, 283286.CrossRefGoogle ScholarPubMed
Snedecor, G. W. & Cochran, W. G. (1967) Statistical Methods, 6th ed. Ames, Iowa: Iowa State University Press.Google Scholar
Stanogias, G. & Pearce, G. R. (1985a) The digestion of fibre by pigs. (1) The effects of amount and type of fibre on apparent digestibility, nitrogen balance and rate of passage. British Journal of Nutrition 53, 513530.CrossRefGoogle ScholarPubMed
Stanogias, G. & Pearce, G. R. (1985b) The digestion of fibre by pigs. (2) Volatile fatty acid concentrations in large intestine digesta. British Journal of Nutrition 53, 531536.CrossRefGoogle ScholarPubMed
Stanogias, G. & Pearce, G. R. (1985c) The digestion of fibre by pigs. (3) Effects of the amount and type of fibre on physical characteristics of segments of the gastrointestinal tract. British Journal of Nutrition 53, 537548.Google Scholar
Tanksley, T. D. & Knabe, D. A. (1984). Ileal digestibilities of amino acids in pig feeds and their use in formulating diets. In Recent Advances in Animal Nutrition, pp. 7595 [W., Haresign and D., J. A. Cole, editors]. London: Butterworths.Google Scholar
Van Soest, P. J. (1963) Use of detergents in the analysis of fibrous feed. (2) A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemists 46, 829835.Google Scholar
Van Soest, P. J. & Wine, R. H. (1967) Use of detergents in the analysis of fibrous feed. (4) Determination of plant cell-wall constituents. Journal of the Association of Official Analytical Chemists 50, 5055.Google Scholar
Varel, V. H. (1987) Activity of fiber-degrading microorganisms in the pig large intestine. Journal of Animal Science 65, 488496.Google Scholar
Varel, V. H., Pond, W. G. & Yen, J. T. (1984) Influence of dietary fiber on the performance and cellulase activity of growing-finishing swine. Journal of Animal Science 59, 388393.CrossRefGoogle ScholarPubMed