Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T11:57:23.279Z Has data issue: false hasContentIssue false

Bioavailability of phyto-oestrogens

Published online by Cambridge University Press:  26 October 2011

Ian Rowland*
Affiliation:
Northern Ireland Centre for Food and Health, University of Ulster, Coleraine BT52 1SA, UK
Marian Faughnan
Affiliation:
Unilever Research, Molecular Nutrition & Physiology Unit, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
Leane Hoey
Affiliation:
Northern Ireland Centre for Food and Health, University of Ulster, Coleraine BT52 1SA, UK
Kristiina Wähälä
Affiliation:
University of Helsinki, Department of Chemistry, Organic Chemistry Laboratory, PO Box 55, FIN-00014 Helsinki, Finland
Gary Williamson
Affiliation:
Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK
Aedin Cassidy
Affiliation:
Unilever Research, Molecular Nutrition & Physiology Unit, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
*
*Corresponding author: Dr I. Rowland, fax +44 (0)2870 323023, email i.rowland@ulst.ac.uk
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The term phyto-oestrogen encompasses isoflavone compounds, such as genistein and daidzein, found predominantly in soya products and the lignans, such as matairesinol and secoisolariciresinol, found in many fruits, cereals and in flaxseed. There is evidence that they have potential health benefits in man particularly against hormone-dependent diseases such as breast and prostate cancers and osteoporosis. This has led to intense interest in their absorption and biotransformation in man. The metabolism of isoflavones and lignans in animals and man is complex and involves both mammalian and gut microbial processes. Isoflavones are present predominantly as glucosides in most commercially available soya products; there is evidence that they are not absorbed in this form and that their bioavailability requires initial hydrolysis of the sugar moiety by intestinal β-glucosidases. After absorption, phyto-oestrogens are reconjugated predominantly to glucuronic acid and to a lesser degree to sulphuric acid. Only a small portion of the free aglycone has been detected in blood, demonstrating that the rate of conjugation is high. There is extensive further metabolism of isoflavones (to equol and O-desmethylangolensin) and lignans (to enterodiol and enterolactone) by gut bacteria. In human subjects, even those on controlled diets, there is large interindividual variation in the metabolism of isoflavones and lignans, particularly in the production of the gut bacterial metabolite equol (from daidzein). Factors influencing absorption and metabolism of phyto-oestrogens include diet and gut microflora.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2003

References

Adlercreutz, H, Fotsis, T, Bannwart, C, Wähälä, K, Brunow, G & Hase, T (1991) Isotope dilution gas chromatographic–mass spectrometric method for the determination of lignans and isoflavonoids in human urine, including identification of genistein. Clinica Chimica Acta 119, 263278.CrossRefGoogle Scholar
Adlercreutz, H, Hockerstedt, K, Bannwart, C, Bloigu, S, Hamalainen, E, Fotsis, T & Ollus, A (1987) Effect of dietary components including lignans and phytoestrogens on enterohepatic circulation and liver metabolism of estrogens and on sex hormone binding globulin. Journal of Steroid Biochemistry 27, 11351144.CrossRefGoogle ScholarPubMed
Adlercreutz, H, Markkanen, H & Watanabe, S (1993) Plasma concentrations of phyto-oestrogens in Japanese men. Lancet 342, 12091210.CrossRefGoogle ScholarPubMed
Adlercreutz, H, van der Wildt, J, Kinzel, J, Attalla, H, Wähälä, K, Makela, T, Hase, T & Fotsis, T (1995) Lignan and isoflavonoid conjugates in human urine. Journal of Steroid Biochemistry and Molecular Biology 52, 97103.CrossRefGoogle ScholarPubMed
Adlercreutz, H, Yamada, T, Wähälä, K & Watanabe, S (1999) Maternal and neonatal phytoestrogens in Japanese women during birth. American Journal of Obstetrics and Gynecology 180, 737743.CrossRefGoogle ScholarPubMed
Andlauer, W, Kolb, J & Furst, P (2000) Absorption and metabolism of genistin in the isolated rat small intestine. FEBS Letters 475, 127130.CrossRefGoogle ScholarPubMed
Axelson, M, Kirk, DN, Farrant, RD, Cooley, G, Lawson, AM & Setchell, KDR (1982) The identification of the weak oestrogen equol in human urine. Biochemical Journal 201, 353357.CrossRefGoogle ScholarPubMed
Axelson, M, Sjovall, J, Gustafsson, BE & Setchell, KDR (1984) Soya — a dietary source of the non-steroidal oestrogen equol in man and animals. Journal of Endocrinology 102, 4956.CrossRefGoogle Scholar
Bannwart, C, Adlercreutz, H, Wähälä, K, Brunow, G & Hase, T (1987) Isoflavonic phytoestrogens in humans — identification and metabolism. European Journal of Cancer and Clinical Oncology 23, 1732.CrossRefGoogle Scholar
Bannwart, C, Fotsis, T, Heikkinen, R & Adlercreutz, H (1984) Identification of the isoflavonic phytoestrogen daidzein in human urine. Clinica Chimica Acta 136, 165172.CrossRefGoogle ScholarPubMed
Bordello, SP, Setchell, KDR, Axelson, M & Lawson, AM (1985) Production and metabolism of lignans by the human fecal flora. Journal of Applied Bacteriology 58, 3743.CrossRefGoogle Scholar
Bowey, E, Adlercreutz, H & Rowland, I (2003) Metabolisms of isoflavones and lignans by the gut microflora — a study in germfree and human flora associated rats. Food and Chemical Toxicology in press.CrossRefGoogle Scholar
Brienholt, V & Larsen, JC (1998) Detection of weak estrogenic flavonoids using a recombinant yeast strain and a modified MCF7 cell proliferation assay. Chemical Research Toxicology 11, 622629.CrossRefGoogle Scholar
Cassidy, A (1991) Plant oestrogens and their relation to hormonal status in women. PhD Thesis, University of Cambridge.Google Scholar
Chang, YC & Nair, MG (1995) Metabolism of daidzein and genistein by intestinal bacteria. Journal of Natural Products 58, 18921896.CrossRefGoogle ScholarPubMed
Coldham, NG, Howells, LC, Santi, A, Monteissa, C, Langlais, C, King, LC, Macpherson, DD & Sauer, MJ (1999) Biotransformation of genistein in the rat: elucidation of metabolite structure by production mass fragmentology. Journal of Steroid Biochemistry and Molecular Biology 70, 169184.CrossRefGoogle ScholarPubMed
Coldham, NG & Sauer, MJ (2000) Pharmacokinetics of [14C]genistein in the rat: gender-related differences, potential mechanisms of biological action and implications for human health. Toxicology and Applied Pharmacology 164, 206215.CrossRefGoogle ScholarPubMed
Coward, L, Barnes, NC, Setchell, KDR & Barnes, S (1993) Genistein, daidzein and their β-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. Journal of Agriculture and Food Chemistry 41, 19611967.CrossRefGoogle Scholar
Day, AJ, DuPont, MS & Saxon, Ridley S (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver and beta glucosidase activity. FEBS Letters 436, 7175.CrossRefGoogle ScholarPubMed
Duncan, AM, Merz-Demlow, BE, Xu, X, Phipps, WR & Kurzer, MS (2000) Premenopausal equol excretors show plasma hormone profiles associated with lowered risk of breast cancer. Cancer Epidemiology, Biomarkers & Prevention 9, 581586.Google ScholarPubMed
Hargreaves, DF, Potten, CS, Harding, C, Shaw, LE, Morton, MS, Roberts, SA, Howell, A & Bundred, NJ (1999) Two-week soy supplementation has an estrogenic effect on normal premenopausal breast. Journal of Clinical Endocrinology and Metabolism 84, 40174024.Google ScholarPubMed
Heinonen, S, Nurmi, T, Liukkonen, K, Poutanen, K, Wähälä, K, Deyama, T, Nishibe, S & Adlercreutz, H (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. Journal of Agriculture and Food Chemistry 49, 31783186.CrossRefGoogle ScholarPubMed
Heinonen, S, Wähälä, K & Adlercreutz, H (1999) Identification of isoflavone metabolites dihydrodaidzein, dihydrogenistein, 6′-OH-O-DMA and cis-4-OH-equol in human urine by GC-MS using authentic reference compounds. Analytical Biochemistry 274, 211219.CrossRefGoogle Scholar
Hollman, PCH & Katan, MB (1998) Absorption, metabolism and bioavailability of flavonoids. In Flavonoids in Health and Disease, pp. 483522 [CA Rice-Evans and L Packer, editors]. New York: Marcel Dekker.Google Scholar
Hutchins, AM, Slavin, JL & Lampe, JW (1995) Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products. Journal of the American Dietetic Association 95, 545551.CrossRefGoogle ScholarPubMed
Ioku, K, Pongpiriyadacha, Y, Konishi, Y, Takei, Y, Nakatani, N & Terao, J (1998) Beta-glucosidase activity in the rat small intestine toward quercetin monoglucosides. Bioscience Biotechnology and Biochemistry 62, 14281431.CrossRefGoogle ScholarPubMed
Izumi, T, Piskula, MK, Osawa, S, Obata, A, Tobe, K, Saito, M, Kataoka, S, Kubota, Y & Kikuchi, M (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. Journal of Nutrition 130, 16951699.CrossRefGoogle ScholarPubMed
Jackson, MJ (1977) The assessment of the bioavailability of micronutrients: introduction. European Journal of Clinical Nutrition 51, Suppl. 1, S1–S2.Google Scholar
Jacobs, E, Kulling, SE & Metzler, M (1999) Novel metabolites of the mammalian lignans enterolactone and enterodiol in human urine. Journal of Steroid Biochemistry and Molecular Biology 68, 211218.CrossRefGoogle ScholarPubMed
Joannou, GE, Kelly, GE, Reeder, AY, Waring, M & Nelson, C (1995) A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. Journal of Steroid Biochemistry and Molecular Biology 54, 167184.CrossRefGoogle ScholarPubMed
Karr, SC, Lampe, JW, Hutchins, AM & Slavin, JL (1997) Urinary isoflavonoid excretion in humans is dose dependent at low to moderate levels of soy protein consumption. American Journal of Clinical Nutrition 66, 4651.CrossRefGoogle ScholarPubMed
Kelly, GE, Joannou, GE, Reeder, AY, Nelson, C & Waring, MA (1995) The variable metabolic response to dietary isoflavones in humans. Proceedings of the Society for Experimental Biology and Medicine 208, 4043.CrossRefGoogle ScholarPubMed
Kelly, GE, Nelson, C, Waring, MA, Joannou, GE & Reeder, AY (1993) Metabolites of dietary soya isoflavones in human urine. Clinica Chimica Acta 223, 922.CrossRefGoogle ScholarPubMed
King, RA (1998) Daidzein conjugates are more bioavailable than genistein conjugates in rats. American Journal of Clinical Nutrition 68, 1496S1499S.CrossRefGoogle ScholarPubMed
King, RA & Bursill, DB (1998) Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. American Journal of Clinical Nutrition 67, 867872.CrossRefGoogle ScholarPubMed
Kirkman, LM, Lampe, JW, Campbell, DR, Martini, MC & Slavin, JL (1995) Urinary lignan and isoflavonoid excretion in men and women consuming vegetable and soy diets. Nutrition and Cancer 24, 112.CrossRefGoogle ScholarPubMed
Knight, DC & Eden, JA (1995) Phytoestrogens — a short review. Maturitas 22, 167175.CrossRefGoogle ScholarPubMed
Kuiper, GG, Lemmen, JG, Carlsson, B, Corton, JC, Safe, SH, van der Saag, PT, van der Burg, B & Gustafsson, JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139, 42524263.CrossRefGoogle ScholarPubMed
Kurzer, MS, Lampe, JW, Martini, MC & Adlercreutz, H (1995) Fecal lignan and isoflavonoid excretion in premenopausal women consuming flaxseed powder. Cancer Epidemiology Biomarkers & Prevention 4, 353358.Google ScholarPubMed
Lampe, JW, Karr, SC, Hutchins, AM & Slavin, JL (1998) Urinary equol excretion with a soy challenge: influence of habitualdiet. Proceedings of the Society for Experimental Biology and Medicine 217, 335339.CrossRefGoogle Scholar
Lee, K, Wang, H, Murphy, PA & Hendrich, S (1995) Soybean isoflavone extract suppresses early but not later promotion of hepatocarcinogenesis by phenobarbital in female rat liver. Nutrition and Cancer 24, 267278.CrossRefGoogle Scholar
Lu, LJW & Anderson, KE (1998) Sex and long-term soy diets affect the metabolism and excretion of soy isoflavones in humans. American Journal of Clinical Nutrition 68, 1500S1504S.CrossRefGoogle Scholar
Lu, LJW, Broemeling, LD, Marshall, MV & Ramanujam, S (1995a) A simplified method to quantify isoflavones in commercial soybean diets and human urine after legume consumption. Cancer Epidemiology, Biomarkers & Prevention 4, 497503.Google ScholarPubMed
Lu, LJW, Grady, JJ, Marshall, MV, Ramanujam, S & Anderson, KE (1995b) Altered time course of urinary daidzein and genistein excretion during chronic soya diet in healthy male subjects. Nutrition and Cancer 24, 311323.CrossRefGoogle ScholarPubMed
Lu, LJW, Lin, SN, Grady, JJ, Nagamani, M & Anderson, KE (1996) Altered kinetics and extent of urinary daidzein and genistein excretion in women during chronic soya exposure. Nutrition and Cancer 26, 289302.CrossRefGoogle ScholarPubMed
Lundh, TJO, Pettersson, H & Kiessling, KH (1988) Demethylation and conjugation of formononetin and daidzein in sheep and cow liver-microsomes. Journal of Agriculture and Food Chemistry 36, 2225.CrossRefGoogle Scholar
McMahon, LG, Nakano, H, Levy, MD & Gregory, JF (1997) Cytosolic pyridoxine-beta-D-glucoside hydrolase from porcine jejunal mucosa — purification, properties, and comparison with broad specificity beta-glucosidase. Journal of Biological Chemistry 272, 3202532033.CrossRefGoogle ScholarPubMed
Mallett, AK & Rowland, IR (1988) Factors affecting the gut microflora. In Role of the Gut Flora in Toxicity and Cancer, pp. 347382 [Rowland, IR, editor], London: Academic Press.CrossRefGoogle Scholar
Mazur, W, Fotsis, T, Wähälä, K, Ojala, S, Salakka, A & Adlercreutz, H (1996) Isotopic dilution gas chromatography-mass spectroscopy methods for the determination of isoflavonoids, coumestrol and lignans in foods. Analytical Biochemistry 233, 169180.CrossRefGoogle Scholar
Messina, MJ, Persky, V, Setchell, KDR & Barnes, S (1994) Soyintake and cancer risk: a review of the in vitro and in vivo data. Nutrition and Cancer 21, 113131.CrossRefGoogle Scholar
Morton, MS, Ferreira, A, Monteiro, L, Correia, R, Blacklock, N, Chan, PSF, Cheng, C, Lloyd, S, Wu, C-P & Griffiths, K (1997) Measurement and metabolism of isoflavonoids and lignans in the human male. Cancer Letters 114, 145151.CrossRefGoogle ScholarPubMed
Morton, MS, Wilcox, G, Wahlqvist, ML & Griffiths, K (1994) Determination of lignans and isoflavonoids in human female plasma following dietary supplementation. Journal of Endocrinology 142, 251259.CrossRefGoogle ScholarPubMed
Nesbitt, PD, Lam, Y & Thompson, LU (1999) Human metabolism of mammalian lignan precursors in raw and processed flaxseed. American Journal of Clinical Nutrition 69, 549555.CrossRefGoogle ScholarPubMed
Owen, RW, Haubner, R, Hull, WE, Thompson, LU, Spiegelhalder, B & Bartsch, H (2001) Formation of the mammalian lignans enterodiol and enterolactone from (+)-pinoresinol a major lignan present in olive oil. In Whole Grains and Human Health, International Symposium held on 13–15 June, Abstracts Book. VTT Symposium vol. 213, pp. 8588. Finland: VTT.Google Scholar
Piskula, MK, Yamakoshi, J & Iwai, Y (1999) Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Letters 447, 287291.CrossRefGoogle Scholar
Rowland, I, Wiseman, H, Sanders, T, Adlercreutz, H & Bowey, E (1999) Metabolism of oestrogens and PEs: role of the gut microflora. Biochemical Society Transactions 27, 304308.CrossRefGoogle Scholar
Rowland, I, Wiseman, H, Sanders, T, Adlercreutz, H & Bowey, E (2000) Interindividual variation in metabolism of isoflavonoids and lignans: the role of the gut microflora and habitual diet. Nutrition and Cancer 36, 2732.CrossRefGoogle Scholar
Setchell, KDR (1998) Phytoestrogens: the biochemistry, physiology and implications for human health of soy isoflavones. American Journal of Clinical Nutrition 68, 133S146S.Google ScholarPubMed
Setchell, KDR & Adlercreutz, H (1988) Mammalian lignans and phytoestrogens: recent studies on their formation, metabolism and biological role in health and disease. In The Role of the Gut Microflora in Toxicity and Cancer, pp. 315345 [Rowland, IR, editor]. London: Academic Press.CrossRefGoogle Scholar
Setchell, KDR, Bordello, SP, Hulme, P, Kirk, DN & Axelson, M (1984) Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. American Journal of Clinical Nutrition 40, 569578.CrossRefGoogle ScholarPubMed
Setchell, KDR, Brown, NM, Desai, P, Zimmer-Nechemias, L, Wolfe, BE, Brashear, WT, Kirschner, AS, Cassidy, A & Heubi, JE (2001) Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. Journal of Nutrition 131, 1362S1375S.CrossRefGoogle ScholarPubMed
Setchell, KDR, Brown, NM, Zimmer-Nechemias, L, Brashear, WT, Wolfe, BE, Kirschner, AS & Heubi, JE (2002) Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. American Journal of Clinical Nutrition 76, 447453.CrossRefGoogle ScholarPubMed
Setchell, KDR & Cassidy, A (1999) Dietary isoflavones: biological effects and relevance to human health. Journal of Nutrition 129, 758S767S.CrossRefGoogle ScholarPubMed
Setchell, KDR, Faughnan, MS, Avades, T, Zimmer-Nechemias, L, Wolfe, BE, Brashear, WT, Desai, P, Oldfield, MF, Botting, NP & Cassidy, A (2003) Comparing the pharmacokinetics of daidzein and genistein with the use of [13C]labeled tracers in premenopausal women. American Journal of Clinical Nutrition in press.CrossRefGoogle Scholar
Setchell, KDR, Gosselin, SJ, Welsh, MB, Johnston, JO, Balistreri, WF, Kramer, LW, Dresser, BL & Tarr, MJ (1987) Dietary estrogens — a probable cause of infertility and liver disease in captive cheetah. Gastroenterology 93, 225233.CrossRefGoogle Scholar
Setchell, KD, Lawson, AM, Borriello, SP, Harkness, R, Gordon, H, Morgan, DM, Kirk, DN, Adlercreutz, H, Anderson, LC & Axelson, M (1981) Lignan formation in man — microbial involvement and possible roles in relation to cancer. The Lancet 2, 47.CrossRefGoogle ScholarPubMed
Setchell, KDR, Nechemias, L, Cai, J & Heubi, JE (1997) Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet 350, 2327.CrossRefGoogle ScholarPubMed
Sfakionos, J, Coward, L, Kirk, M & Barnes, S (1997) Intestinal uptake and biliary excretion of the isoflavone genistein in rats. Journal of Nutrition 127, 12601268.CrossRefGoogle Scholar
Shelnutt, SR, Cimino, CO, Wiggins, PA & Badger, TM (2000) Urinary pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein. Cancer Epidemiology, Biomarkers & Prevention 9, 413419.Google Scholar
Shutt, DA (1976) The effects of plant oestrogens on animal reproduction. Endeavour 35, 110113.CrossRefGoogle ScholarPubMed
Steensma, A, Noteborn, HPJM, van der Jagt, RCM, Ploman, THG, Mengelers, MJB & Kuiper, HA (1999) Bioavailability of genistein, daidzein, and their glycosides in intestinal epithelial Caco-2 cells. Environmental Toxicology and Pharmacology 7, 209212.CrossRefGoogle ScholarPubMed
Tew, B-Y, Xu, X, Wang, H-J, Murphy, PA & Hendrich, S (1996) A diet high in wheat fiber decreases the bioavailability of soybean isoflavones in a single meal fed to women. Journal of Nutrition 126, 871877.CrossRefGoogle Scholar
Verdeal, K & Ryan, DS (1979) Naturally-occuring estrogens in plant foodstuffs — a review. Journal of Food Protection 42, 577583.CrossRefGoogle Scholar
Wähälä, K, Salakka, A & Adlercreutz, H (1998) Synthesis of novel mammalian metabolites of the isoflavonoid phytoestrogens daidzein and genistein. Proceedings of the Society for Experimental Biology and Medicine 217, 293299.CrossRefGoogle Scholar
Wang, L, Meselhy, R, Li, Y, Qin, G & Hattori, M (2000) Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans enterodiol and enterolactone. Chemical and Pharmacology Bulletin 48, 16061610.CrossRefGoogle ScholarPubMed
Watanabe, S, Yamaguchi, M, Sobue, T, Takahashi, T, Miura, T, Arai, Y, Mazur, W, Wähälä, K & Adlercreutz, H (1998) Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (kinako). Journal of Nutrition 128, 17101715.CrossRefGoogle ScholarPubMed
Weber, KS, Jacobson, NA, Setchell, KD & Lephart, ED (1999) Brain aromatase and 5 alpha reductase, regulatory behaviours and testosterone levels in adult rats on phytoestrogen diets. Proceedings of the Society for Experimental Biology and Medicine 221, 131135.CrossRefGoogle ScholarPubMed
Wiseman, H (1999) The bioavailability of non-nutrient plant factors: dietary flavonoids and phyto-oestrogens. Proceedings of the Nutrition Society 58, 139146.CrossRefGoogle ScholarPubMed
Xu, X, Harris, KS, Wang, H, Murphy, PA & Hendrich, S (1995) Bioavailability of soybean isoflavones depends upon gut microflora in women. Journal of Nutrition 125, 23072315.CrossRefGoogle ScholarPubMed
Xu, X, Wang, H, Murphy, PA, Cook, L & Hendrich, S (1994) Daidzein is a more bioavailable soymilk isoflavone than genistein in adult women. Journal of Nutrition 124, 825832.CrossRefGoogle ScholarPubMed
Zhang, Y, Wang, GJ, Song, TT, Murphy, PA & Hendrich, S (1999) Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity. Journal of Nutrition 129, 957962.CrossRefGoogle ScholarPubMed