Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T08:51:39.095Z Has data issue: false hasContentIssue false

A biochemical evaluation of the erythrocyte glutathione reductase (EC 1.6.4.2) test for riboflavin status

1. Rate and specificity of response in acute deficiency

Published online by Cambridge University Press:  09 March 2007

A. M. Prentice
Affiliation:
Dunn Nutrition Unit, University of Cambridge and Medical Research Council, Cambridge
C. J. Bates
Affiliation:
Dunn Nutrition Unit, University of Cambridge and Medical Research Council, Cambridge
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Acute riboflavin deficiency was produced in weanling rats by feeding a deficient diet and using tailcups to prevent refection. Animals were killed at weekly interval for 7 weeks, by the end of which they had become severely deficient, and mortality was high.

2. Growth of the deficient animals virtually ceased in the early stages of deficiency; food intake was severely and progressively depressed. Liver: body-weight increased markedly; packed cell volume fell at a late stage only. Pathological signs accumulated throughout the deficiency but were not closely related to the biochemical changes within the deficient group.

3. The activation coefficient (stimulated: basal activity; AC) of glutathione oxidoreductase (EC 1.6.4.2; glutathione reductase; GR) in erythrocytes rose to a mean value of 3–8 after 3 weeks, and subsequently remained almost constant: this change was not seen in pair-fed or ud lib.-fed controls. Both deficient and pair-fed animals exhibited a twofold reduction in FAD-stimulated erythrocyteGR activity at an early stage. In liver, both deficient and pair-fed groups showed a major progressive fall in FAD-stimulated GR activity, but only the deficient group showed an increase in AC, which occurred towards the later stages of the experiment. In skin, too, the deficient group showed an increase in AC during the terminal stages.

4. Hepatic, intestinal and brain succinate: (acceptor) oxidoreductase (EC 1.3.99,1; succinate dehydrogenase) activity fell relatively early during deficiency; in liver and intestine this was at least partly shared by the pair-fed group, and therefore attributable to inanition. Changes in hepatic NADH:(acceptor) oxidoreductase (EC I.6.99.3; NADH dehydrogenase) activity appeared to be entidy attributable to inanition.

5. An early reduction was observed in hepatic ATP: riboflavin 5-phosphotransferase (EC 2.7.1.26; flavo- kinase) activity in the deficient group, values falling by nearly half within 1 week, and then remaining almost constant. Similar but smaller changes were seen in renal flavokinase activity. Hepatic ATP: FMN adenylyltrans- ferase (EC 2.7.7.2; FAD pyrophosphorylase) was unchanged until the third week, at which point it rose sharply to a new plateau in the deficient group; in kidney it did not respond. These changes were not observed in pair-fed or ad-lib.-fed controls.

6. Hepatic flavin levels fell dramatically during the first 2 weeks of deficiency, FAD being conserved at the expense of FMN. Smaller changes were observed in kidney.

7. Of the processes which are affected by riboflavin deficiency, AC of erythrocyte GR (EGRAC) responds earlier, more dramatically and more specifically than most others, with the possible exception of hepatic flavin levels and flavokinase. Potentially, it is therefore a good index of over-all body riboflavin status, but in acute deficiency the rate of response of many variables is not related to the final extent of response; consequently the correlation between EGRAC and other riboflavin-sensitive processes is less satisfactory than it would be in an equilibrium situation.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

Alfrey, C. P. & Lane, M. (1970). Semin. Haemat. 7, 49.Google Scholar
Arrigoni, O. & Singer, T. P. (1962). Nature, Lond. 193, 1256.CrossRefGoogle Scholar
Axelrod, A. E., Swingle, K. F. & Elvehjem, C. A. (1942). J. biol. Chem. 145, 297.CrossRefGoogle Scholar
Bamji, M. S., Rameshwar Sarma, K. V. & Radhaiah, G. (1979). Br. J. Nutr. 41, 431.CrossRefGoogle Scholar
Bamji, M. S. & Sharada, D. (1971). Clinica. chim. Acta. 31, 409.CrossRefGoogle Scholar
Bamji, M. S. & Sharada, D. (1972). J. Nutr. 102, 443.CrossRefGoogle Scholar
Beinert, H., Palmer, G., Cremona, T. & Singer, T. P. (1963). Biochem. biophys. Res. Commun. 12, 432.CrossRefGoogle Scholar
Bernath, P. & Singer, T. P. (1962). Meths. Enzym. 5, 597.CrossRefGoogle Scholar
Bessey, O.A., Lowry, O. H. & Love, R. H. (1949). J. biol. Chem. 180, 755.CrossRefGoogle Scholar
Bro-Rasmussen, F. (1958). Nutr. Abstr. Rev. 28, 1.Google Scholar
Burch, H. B., Hunter, E. F., Combs, A. M. & Schutz, B. A. (1960). J. biol. Chem. 235, 1540.CrossRefGoogle Scholar
Buzina, R., Brodarec, A., Jušić, M., Milanović, N., Kolombo, V. & Brubacher, G. (1973). Int. Z. Vitamforsch. 43, 401.Google Scholar
De Luca, C. & Kaplan, N.O. (1958). Biochim. biophys. Acta 30, 6.CrossRefGoogle Scholar
Endicott, K. M., Kornberg, A. & Ott, M. (1947). Blood 2, 164.CrossRefGoogle Scholar
Fass, S. & Rivlin, R. S. (1969). Am. J. Physiol. 217, 988.CrossRefGoogle Scholar
Foy, H & Kondi, A. (1968). Am. J. clin. Nutr. 26, 653.Google Scholar
Garry, P. J. & Owen, G. M. (1976). Am. J. clin. Nutr. 29, 663.CrossRefGoogle Scholar
Giuditta, A. & Singer, T. P. (1959). J. biol. Chem. 234, 666.CrossRefGoogle Scholar
Glatzle, D., Körner, W. F., Christeller, S. & Wiss, O. (1970). Int. Z. Vitamforsch. 40, 166.Google Scholar
Glatzle, D., Weiser, H., Weber, F. & Wiss, O. (1973). Int. Z. Viramforsch. 43, 187.Google Scholar
Goldsmith, G. A. (1975). In Riboflavin, p. 221 [Rivlin, R. S., editor]. New York: Plenum Press.CrossRefGoogle ScholarPubMed
Greenfield, H., Briggs, G. M., Watson, R. G. J. & Yudkin, J. (1969). Proc. Nutr. Soc. 28, 43A.Google Scholar
Guggenheim, K. & Daimant, E. J. (1959). Br. J. Nutr. 13, 61.CrossRefGoogle Scholar
Hassan, F. M. & Thurnham, D. I. (1977). Int. Z. Vitamforsch. 47, 349.Google Scholar
Hatefi, Y., Haavik, A. G. & Griffiths, D. E. (1962). J. biol. Chem. 237, 1076.CrossRefGoogle Scholar
Hoppel, C., Di Marco, J. P. & Tandler, B. (1979). J. biol. Chem. 254, 4164.CrossRefGoogle Scholar
Horwitt, M. K. (1972). In The Viramins, Vol. 5, p. 73 [Sebrell, w.H. and Hams, R. S., editors]. New York: Academic Press.Google Scholar
Kearney, E. B. & Englard, S. (1951). J. biol. Chem. 193, 821.CrossRefGoogle Scholar
Kearney, E. B. & Singer, T. P. (1956). J. biol. Chem. 219, 963.CrossRefGoogle Scholar
Kim, Y. S. & Lambooy, J. P. (1969). J. Nutr. 98, 467.CrossRefGoogle Scholar
Kopaczyk, K. C. (1967). Meths. Enzym. 10, 253.CrossRefGoogle Scholar
Lakshmi, A. V. & Bamji, M. S. (1974). Br. J. Nutr. 32, 249.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
McCormick, D. B. (1961). Proc. Soc. exp. Biol. Med. 107, 784.CrossRefGoogle Scholar
McCormick, D. B. & Russell, M. (1962). Comp. Biochem. Physiol. 5, 113.CrossRefGoogle Scholar
Merrill, A. H., Addison, R. & McCormick, D. B. (1978). Proc. Soc. exp. Biol. Med. 158, 572.CrossRefGoogle Scholar
Miller, Z., Poncet, I. & Takacs, E. (1962). J. biol. Chem. 237, 968.CrossRefGoogle Scholar
Minikami, S., Ringler, R. L. & Singer, T. P. (1962). J. biol. Chem. 237, 569.CrossRefGoogle Scholar
Nolte, J., Brdiczka, D. & Staudte, H. W. (1972). Biochem. biophys. Acta 268, 611.Google Scholar
Paniker, N. V., Srivastava, S. K. & Beutler, E. (1970). Biochim. biophys. Acta 215, 456.CrossRefGoogle Scholar
Pinto, J. & Rivlin, R. S. (1979). Archs Biochem. Biophys. 194, 313.CrossRefGoogle Scholar
Pirie, A., van Heyningen, R. & Boag, J. W. (1953). Biochem. J. 54, 682.CrossRefGoogle Scholar
Prentice, A. M. (1977). The biochemical effects of riboflavin deficiency. PhD Thesis, University of Cambridge.Google Scholar
Prentice, A. M. & Bates, C. J. (1980). Br. J. Nurr. 43, 171.CrossRefGoogle Scholar
Prentice, A.M. & Bates, C. J. (1981). Br. J. Nurr. 45, 53CrossRefGoogle Scholar
Rivlin, R. S. & Langdon, R. GI (1966). Adv. Enz. Reg. 4, 45.CrossRefGoogle Scholar
Scott, E. M., Duncan, I. W. & Ekstrand, V. (1963). J. biol. Chem. 238, 3928.CrossRefGoogle Scholar
Shukers, C. F. & Day, P. L. (1943). J. Nurr. 25, 511.Google Scholar
Singer, T. P. (1966). In Comprehensive Biochemisrry, Vol. 14, p. 127. [Florkin, M. and Stotz, E. H., editors]. Amsterdam: Elsevier.Google Scholar
Sirivech, S., Driskell, J. & Frieden, E. (1977). J. Nurr. 107, 739.Google Scholar
Smith, L. (1958). Methods of Biochemical Analysis. 2, 427 [Glick, D., editor]. New York: Interscience Publishers.CrossRefGoogle Scholar
Thurnham, D. I., Migasena, P. & Pavapootanon, N. (1970). Mikrochim. Acta 5, 988.CrossRefGoogle Scholar
Thurnham, D. I., Migasena, P., Vudhivai, N. & Supawan, V. (1971). S.E. Asian J. Trop. Med. Publ. Hlth 2, 552.Google Scholar
Tillotson, J. A. & Baker, E. M. (1972). Am. J. clin. Nutr. 25, 425.CrossRefGoogle Scholar
Tillotson, J. A. & Sauberlich, H. E. (1971). J. Nurr. 101, 1459.Google Scholar
Vo-Khactu, K. P., Sims, R. L., Clayburgh, R. H. & Sanstead, H. H. (1976). J. Lob. clin. Med. 87, 741.Google Scholar
Worthington, D. J. & Rosemeyer, M. A. (1976). Eur. J. Biochem. 67, 231.CrossRefGoogle Scholar
Zaman, Z. & Verwilghen, R. L. (1975). Biochem. biophys. Res. Commun. 67, 1192.CrossRefGoogle Scholar
Zaman, Z. & Verwilghen, R. L. (1977). Biochem. Soc. Trans. 5, 306.CrossRefGoogle Scholar