Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T06:28:20.713Z Has data issue: false hasContentIssue false

Changes in the alkaline phosphatase (EC 3.1.3.1) and inorganic pyrophosphatase (EC 3.6.1.1) activities of rat tissues during magnesium deficiency. The importance of controlling feeding pattern

Published online by Cambridge University Press:  09 March 2007

B. W. Loveless
Affiliation:
Department of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ
F. W. Heaton
Affiliation:
Department of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The adoption of a meal-eating pattern of feeding by rats altered the alkaline phosphatase (EC 3.1.3.1) activity in serum and liver. It was therefore necessary to regulate the feeding pattern of both magnesium-deficient rats and control animals receiving a Mg-adequate diet in order to study the effect of the deficiency.

2. Mg deficiency decreased the activities of alkaline phosphatase and inorganic pyro-phosphatase (EC 3.6.1.1) in serum, kidney and tibia, but increased them in spleen.

3. Addition of a standard concentration of exogenous Mg to tissue extracts usually increased the activity of corresponding enzymes from Mg-deficient and control rats by the same proportion, indicating that the main effect of the deficiency was on the amount of enzyme present rather than on the efficiency of its operation.

4. Certain quantitative differences in the response to exogenous Mg and the activity ratio, alkaline phosphatase: inorganic pyrophosphatase were found between tissues from Mg-deficient and control rats. The significance of these are discussed in relation to the association of the two enzymic activities with the same protein molecule, and the possible occurrence of isoenzymes.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1976

References

Bussell, N. E., Vogel, J. J. & Levy, B. M. (1974). Proc. Soc. exp. Biol. Med. 145, 574.CrossRefGoogle Scholar
Conyers, R. A. J., Birkett, D. J., Neale, F. C., Posen, S. & Brundenell-Woods, J. (1967). Biochim. biophys. Acta 139, 363.CrossRefGoogle Scholar
Cox, R. P., Gilbert, P. & Griffin, M. J. (1967). Biochem. J. 105, 155.CrossRefGoogle Scholar
Dacie, J. V. & Lewis, S. M. (1970). Practical Haematology, 4th ed., p. 91. London: J. & A. Churchill.Google Scholar
Eaton, R. H. & Moss, D. W. (1967). Biochem. J. 105, 1307.CrossRefGoogle Scholar
Fábry, P. (1967). In Handbook of Physiology. Section 6: Alimentary Canal, Vol. 1, p. 31 [Code, C. F. editor]. Washington, DC: American Physiological Society.Google Scholar
Fernley, H. N. & Walker, P. G. (1967). Biochem. J. 104, 1011.CrossRefGoogle Scholar
Hamuro, Y. (1971). J. Nutr. 101, 635.CrossRefGoogle Scholar
Heaton, F. W. (1965). Nature, Lond. 207, 1292.CrossRefGoogle Scholar
Heaton, F. W. (1973). Biochem. Soc. Trans. 1, 67.CrossRefGoogle Scholar
Heaton, F. W. & Anderson, C. K. (1965). Clin. Sci. 28, 99.Google Scholar
Heaton, F. W. & Loveless, B. W. (1973). Proc. Nutr. Soc. 32, 18A.Google Scholar
Kaplow, L. S. (1955). Blood 14, 975.Google Scholar
Larvor, P., Girard, A., Brochart, M., Parodi, A. & Sevestre, J. (1964). Annls Biol. anim. Biochim. Biophys. 4, 345.CrossRefGoogle Scholar
Leveille, G. A. (1966). J. Nutr. 90, 449.CrossRefGoogle Scholar
Leveille, G. A. (1972). J. Nutr. 102, 549.CrossRefGoogle Scholar
Loveless, B. W., Williams, P. & Heaton, F. W. (1972). Br. J. Nutr. 28, 261.CrossRefGoogle Scholar
Mahler, H. R. (1961). In Mineral Metabolism, Vol. 1, part B, p. 743 [Comar, C. L. & Bronner, F., editors]. New York and London: Academic Press.Google Scholar
Majeska, R. & Wuthier, R. E. (1975). Biochim. biophys. Acta 392, 51.CrossRefGoogle Scholar
Melani, F. & Farnararo, M. (1969). Biochim. biophys. Acta 178, 93.CrossRefGoogle Scholar
Morton, R. K. (1953). Biochem. J. 55, 786.CrossRefGoogle Scholar
Moss, D. W., Eaton, R. H., Smith, J. K. & Whitby, L. G. (1967). Biochem. J. 102, 53.CrossRefGoogle Scholar
Nayudu, P. R. V. & Hercus, F. B. (1974). Biochem. J. 141, 93.CrossRefGoogle Scholar
Newton, M. A. (1967). Q. Jl Med. 36, 17.Google Scholar
Panusz, H. T., Graczyk, G., Wilmanska, D. & Skarzynski, J. (1970). Analyt. Biochem. 35, 494.CrossRefGoogle Scholar
Pimstone, B., Eisenberg, E. & Stallone, W. (1966). Proc. Soc. exp. Biol. Med. 123, 201.CrossRefGoogle Scholar
Saini, P. K. & Done, J. (1972). Biochim. biophys. Acta 258, 147.CrossRefGoogle Scholar
Saini, P. K. & Posen, S. (1969). Biochim. biophys. Acta 177, 42.CrossRefGoogle Scholar
Wacker, W. E. C. (1969). Ann. N.Y. Acad. Sci. 167, 717.CrossRefGoogle Scholar
Wootton, I. D. P. (1964). Microanalysis in Medical Biochemistry, 4th ed., p. 101. London: J. & A. Churchill.Google Scholar