Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T01:00:42.840Z Has data issue: false hasContentIssue false

Changes in the concentrations.of the minor Constituents of goat's milk during starvation and on refeeding of the lactating animal and their relationship to mammary gland metabolism

Published online by Cambridge University Press:  09 March 2007

N. Chaiyabutr
Affiliation:
The Hannah Research Institute, Ayr KA6 5HL
Anne Faulkner
Affiliation:
The Hannah Research Institute, Ayr KA6 5HL
M. Peaker
Affiliation:
The Hannah Research Institute, Ayr KA6 5HL
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Changes in the concentrations of the minor constituents of goat's milk were observed during 48 h starvation and on refeeding.

2. The concentrations of hexose phosphate and UDP-hexoses increased during starvation and decreased on refeeding.

3. The concentrations of phosphoenolpyruvate and glycerate 3-phosphate decreased during starvation and increased on refeeding.

4. Isocitrate: 2-oxoglutarate increased during starvation and decreased on refeeding.

5. Changes in the minor constituents of milk can be explained in terms of the metabolic changes occurring in the mammary gland during starvation. It is proposed that changes in the concentrations of these metabolites in milk reflect changes in their concentrations in the cytosol or Golgi vesicles of the mammary gland.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

Annison, E. F. & Linzell, J. L. (1964). J. Physiol., London. 175, 372.CrossRefGoogle Scholar
Annison, E. F., Linzell, J. L., Fazakerley, S. & Nichols, B. W. (1967). Biochem. J. 102, 637.CrossRefGoogle Scholar
Annison, E. F., Linzell, J. L. & West, C. E. (1968). J. Physiol., London. 197, 445.CrossRefGoogle Scholar
Bauman, D. E., Brown, R. E. & Davis, C. L. (1970). Arch. Biochem. Biophys. 140, 237.CrossRefGoogle Scholar
Bergmeyer, H. U. & Bernt, E. (1974). In Methods of Enzymatic Analysis, p. 1577 [Bergmeyer, H. U., editor]. London: Academic Press.Google Scholar
Bergmeyer, H. U. & Michal, G. (1974). In Methods of Enzymatic Analysis, p. 1233 [Bergmeyer, H. U., editor], London: Academic Press.Google Scholar
Chaiyabutr, N., Faulkner, A. & Peaker, M. (1980). Biochem. J. 186, 301.CrossRefGoogle Scholar
Czok, R. (1974). In Methods of Enzymatic Analysis, p. 1424 [Bergmeyer, H. U., editor]. London: Academic Press.Google Scholar
Czok, R. & Lamprecht, W. (1974). In Methods of Enzymatic Analysis, p. 1446 [Bergmeyer, H. U., editor]. London: Academic Press.Google Scholar
Dagley, S. (1974). In Methods of Enzymatic Analysis, p. 1562 [Bergmeyer, H. U., editor]. London: Academic Press.Google Scholar
Erfle, J. D., Fisher, L. J. & Sauer, F. D. (1970). J. Dairy Sci. 53, 486.CrossRefGoogle Scholar
Faulkner, A. (1980). Biochim. biophys. Acta (In the Press).Google Scholar
Grassel, M. (1974). In Methods of Enzymatic Analysis, p. 2153 [Bergmeyer, H. U., editor]. London: Academic Press.CrossRefGoogle Scholar
Gummaa, K. A., Greenbaum, A. L. & McLean, P. (1971). In Lactation, p. 197 [Falconer, I. R., editor]. London: Butterworth & Co. Ltd.Google Scholar
Gutmann, I. & Wahlefeld, A. W. (1974). In Methods of Enzymatic Analysis, p. 1585 [Bergmeyer, H. U., editor]. London: Academic Press.Google Scholar
Jaworek, D., Gruber, W. & Bergmeyer, H. U. (1974). In Methods of Enzymatic Analysis, p. 2127 [Bergmeyer, H. U., editor]. London: Academic Press.CrossRefGoogle Scholar
Jenness, R. (1974). In Loctation: A Comprehensive Treatise. Vol. 3, p. 3 [Larson, B. L. and Smith, V. R., editors]. London: Academic Press.Google Scholar
Johke, T. (1978). In Loctation: A Comprehensive Treatise, Vol. 4. p. 513 [ Larson, B. L.. editor]. London: Academic Press.Google Scholar
Khatra, B. S., Herries, D. G. & Brew, K. (1974). Eur. J. Biochem. 44, 537.CrossRefGoogle Scholar
Konar, A., Thomas, P. C. & Rook, J. A. F. (1971). J. Dairy Res. 38, 333.CrossRefGoogle Scholar
Kuhn, N. J. & White, A. (1975). Biochem. J. 152, 153.CrossRefGoogle Scholar
Kuhn, N. J. & White, A. (1976). Biochem. J. 154, 243.CrossRefGoogle Scholar
Kuhn, N. J. & White, A. (1977). Biochem. J. 168, 423.CrossRefGoogle Scholar
Lamprecht, W. & Trautschold, I. (1974). In Methods of Enzymatic Analysis, p. 2101 [Bergmeyer, H. U., editor]. London: Academic Press.Google Scholar
Lang, G. & Michal, G. (1974). In Methods of Enzymatic Analysis, p. 1239 [Bergmeyer, H. U., editor]. London: Academic Press.Google Scholar
Linzell, J. L. (1960). J. Physiol., London. 153, 481.CrossRefGoogle Scholar
Linzell, J. L. (1967). J. Physiol., London. 190, 333.CrossRefGoogle Scholar
Linzell, J. L. & Peaker, M. (1971). Physiol. Rev. 51, 564.CrossRefGoogle Scholar
Siebert, G. (1974). In Methods of Enzymatic Analysis, p. 1570 [Bergmeyer, H. U., editor]. London: Academic Press.Google Scholar
Teles, F. F. F., Young, C. K. & Stull. J. W. (1978). J. Dairy Sci. 61, 506.CrossRefGoogle Scholar
Thomson, E. M., Snoswell, A. M., Clarke, P. L. & Thompson, G. E. (1979). Q. Jl. exp. Physiol. 64, 7.CrossRefGoogle Scholar
Veech, R. L., Eggleston, L. V. & Krebs. H. A. (1969). Biochem. J. 115, 609.CrossRefGoogle Scholar
Weil-Malherbe, H. & Green, R. H. (1951). Biochem. J. 49,286.Google Scholar
Wilson, D. B. & Hogness, D. S. (1968). In Methods in Enzymology, Vol. 8, p. 346 [Neufeld, E. F. and Ginsburg, V., editors]. London: Academic Press.Google Scholar