Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T06:29:39.487Z Has data issue: false hasContentIssue false

Comparative metabolism of L-methionine, DL-methionine and DL-2-hydroxy 4-methylthiobutanoic acid by broiler chicks

Published online by Cambridge University Press:  24 July 2007

C. Linda Saunderson
Affiliation:
Agricultural and Food Research Council's Poultry Research Centre, Roslin, Midlothian EH25 9PS
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Metabolism, in broiler chicks, of DL-2-hydroxy 4-methylthiobutanoic acid (DL-HMB), DL-methionine and L-methionine was compared in vivo using 14C-labelled tracers.

2. The distribution of L-[1-14C]methionine and DL-[1-14C]HMB in the major body tissues was examined for a period of 120 min after administration.

3. The relative oxidation (14CO2, exhaled), excretion and incorporation into tissue protein of L-[l-14C]methionine, DL-[l-14C]methionine and DL-[1-14C]HMB were measured in fed birds.

4. Tissue distribution of L-[1-14C]methionine and DL-[1-14C]HMB differed during 60–90 min following administration.

5. The production of 14CO2, from each of the tracers was similar but excretion of 14C-labelled material was very different with the greatest excretion from DL-[1-14C]HMB and the least from L[1-14C]methionine.

6. The incorporation of 14C into tissue proteins varied with the tracer given and the tissue examined. Liver and kidney had equivalent incorporation from each of the tracers while other tissues examined showed lower incorporation from DL-[1-14C]methionine and DL-[1-14C]HMB.

7. The results show that DL-HMB, D-methionine and L-methionine are metabolized differently in vivo and that they are excreted in differing proportions. There is also a difference in the ability of each to act as a precursor for protein synthesis in tissues other than liver.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Baker, C. G. (1952). Archives of Biochemistry and Biophysics 41, 325332.Google Scholar
Baker, D. H. (1976). Federation Proceedings 35, 19171922.Google Scholar
Baker, D. H. & Boebel, K. P. (1980). Journal of Nutrition 110, 959964.CrossRefGoogle Scholar
Bird, F. (1952). Poultry Science 31, 10951096.Google Scholar
Boebel, K. P. & Baker, D. H. (1982). Poultry Science 61, 11671175.CrossRefGoogle Scholar
Bolton, W. & Blair, R. (1974). Poultry Nutrition Bulletin no. 174, 4th ed. London: H.M. Stationery Office.Google Scholar
Christensen, A. C., Anderson, J. O. & Dobson, D. C. (1980). Poultry Science 59, 24802484.Google Scholar
Crampton, R. F. & Smyth, D. H. (1953). Journal of Physiology 122, 110.Google Scholar
Dibner, J. J. (1983). Journal of Nutrition 113, 21162123.Google Scholar
Dibner, J. J. & Knight, C. D. (1984 a). Journal of Nutrition 114, 17161723.Google Scholar
Dibner, J. J. & Knight, C. D. (1984 b). Journal of Nutrition 114, 21792186.Google Scholar
Featherston, W. R. & Horn, G. W. (1974). Poultry Science 53, 680686.Google Scholar
Gordon, R. S. & Sizer, I. W. (1955). Poultry Science 34, 1198.Google Scholar
Gordon, R. S. & Sizer, I. W. (1965). Poultry Science 44, 673678.CrossRefGoogle Scholar
Jeffay, H.& Alvarez, J. (1961). Analytical Chemistry 33, 612615.Google Scholar
Katz, R. S. & Baker, D. H. (1975 a). Poultry Science 54, 584591.CrossRefGoogle Scholar
Katz, R. S. & Baker, D. H. (1975 b). Poultry Science 54, 16671674.Google Scholar
Kies, C., Fox, H. & Aprahamian, S. (1975). Journal of Nutrition 105, 809814.Google Scholar
Koban, H. G. & Koberstein, E. (1984). Journal of Agricultural and Food Chemistry 32, 393396.Google Scholar
La Noue, K., Nicklas, W. J. & Williamson, J. R. (1970). Journal of Biological Chemistry 245, 102111.Google Scholar
Langer, B. W. (1965). Biochemical Journal 95, 683687.Google Scholar
Larbier, M. & Perrot, I. (1984). Archive für Geflugelkunde 48, 113116.Google Scholar
Lerner, J., Yankelowitz, S. & Taylor, M. W. (1969). Experientia 25, 689691.Google Scholar
Mitchell, A. D. & Benevenga, N. J. (1978). Journal of Nutrition 108, 6778.Google Scholar
Reid, B. L., Madrid, A. & Maiorino, P. H. (1982). Poultry Science 61, 726730.Google Scholar
Saroka, J. M. & Combs, G. F. (1983). Poultry Science 62, 1496.Google Scholar
Saunderson, C. L. (1983 a). European Association of Animal Production IVth International Symposium on Protein Metabolism and Nutrition, INRA publication no. 16; vol. 2, pp. 4144. Paris, France: INRA.Google Scholar
Saunderson, C. L. (1983 b). Proceedings of the Nutrition Society 42, 139A.Google Scholar
Smith, R. E. (1966). Poultry Science 45, 571577.Google Scholar
Spydevold, Ø. (1979). European Journal of Biochemistry 97, 389394.CrossRefGoogle Scholar
Stegink, L. D., Moss, J., Printen, K. & Cho, E. S. (1980). Journal of Nutrition 110, 12401246.Google Scholar
Tipton, H. C., Dilworth, B. C. & Day, E. J. (1966). Poultry Science 45, 381387.Google Scholar
Tubbs, P. K. & Greville, G. D. (1961). Biochemical Journal 81, 104114.Google Scholar
van Weerden, E. J., Bertram, H. L. & Schutte, J. B. (1982). Poultry Science 61, 11251130.Google Scholar
van Weerden, E. J., Schutte, J. B. & Bertram, H. L. (1983). Poultry Science 62, 12691274.CrossRefGoogle Scholar