Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T19:27:30.728Z Has data issue: false hasContentIssue false

Comparative studies on the digestive physiology of sheep fed on semi-purified or roughage-concentrate diets

2*. Microbiological investigations

Published online by Cambridge University Press:  09 March 2007

D. Giesecke
Affiliation:
Institut für Physiologie und Ernährung der Tiere, Universität München, Germany
M. J. Lawlor
Affiliation:
Institut für Physiologie und Ernährung der Tiere, Universität München, Germany
Karin Walser-KÄrst
Affiliation:
Institut für Physiologie und Ernährung der Tiere, Universität München, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In a study of the microbial population in the rumen contents of sheep fed on a semipurified or a roughage-concentrate diet, the total counts and morphological groups of bacteria and protozoa, the counts of proteolytic, amylolytic and cellulolytic bacteria and the rates of breakdown of cellulose and starch in vitro were determined. Three sheep received each diet. 2. Protozoa disappeared completely from the rumen of sheep fed on the semi-purified diet. High counts of Entodinia persisted in the rumen of two sheep on the roughage-concentrate diet; a third animal was maintained defaunated on this diet. 3. The mean total counts of bacteria per g of rumen contents were 5 x 1010 and 2.5 x 1010 respectively in sheep fed on the semi-purified and roughage-concentrate diets and 11.4 x 1010 in the defaunated sheep. 4. The proportions of the morphological groups of bacteria and the counts of amylolytic bacteria were similar with both diets; the mean counts of proteolytic and cellulolytic bacteria were twice as high in the sheep on the semi-purified diet. The counts of all three functional groups of bacteria were considerably higher in the single defaunated sheep. 5. The mean rates of cellulose breakdown were 16.6 and 9.5 g/l. rumen fluid per 24 h for the sheep fed on the semi-purified and roughage-concentrate diets respectively. The corresponding rates of starch fermentation were 28 and 42.4 g/l. rumen fluid per 24 h. 6. It is concluded that the bacterial population in the rumen of sheep fed on the semi-purified and the roughage-concentrate diets differed quantitatively rather than qualitatively. It is also concluded that the absence of protozoa, rather than a direct nutritive effect of the semi-purified diet, was responsible for the increased bacterial population in the rumen of the sheep fed on the semi-purified diet. The much higher bacterial counts in the rumen of the defaunated sheep support this view.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1966

References

REFERENCES

Blackburn, T. H. & Hobson, P. N. (1960). J. gen. Microbial. 22, 290.CrossRefGoogle Scholar
Blackburn, T. H. & Hobson, P. N. (1962). J. gen. Microbial. 29, 69.CrossRefGoogle Scholar
Brüggemann, J. & Giesecke, D. (1963). Z. Tierphys., Tierernähr. u. Futtermittelk. 18, 215.CrossRefGoogle Scholar
Bryant, M. P. & Burkey, L. A. (1953). J. Dairy Sci. 36, 205.CrossRefGoogle Scholar
Bryant, M. P. & Robinson, I. M. (1961). J. Dairy Sci. 44, 1446.CrossRefGoogle Scholar
Bryant, M. P. & Small, N. (1960). J. Dairy Sci. 43, 654.CrossRefGoogle Scholar
Christiansen, W. C. & Burroughs, W. (1962). J. Anim. Sci. 21, 990.CrossRefGoogle Scholar
Coleman, G. S. (1958). Nature, Lond., 182, 1104.Google Scholar
Eadie, J. M. & Hobson, P. N. (1962). Nature, Lond., 193, 503.CrossRefGoogle Scholar
Gall, L. S., Thomas, W. E., Loosli, J. K. & Huhtanen, C. N. (1951). J. Nutr. 4, 113.CrossRefGoogle Scholar
Giesecke, D. (1960). Zentbl. Bakt. Parasit. Abt. 1, 179, 448.Google Scholar
Hallmann, L. (1955). Bakteriologie und Serologie, 2nd ed., p. 760. Stuttgart: Georg. Thieme Verlag.Google Scholar
Huhtanen, C. N., Saunders, R. K. & Gall, L. S. (1954). J. Dairy Sci. 37, 328.CrossRefGoogle Scholar
Hungate, R. E. (1950). Bact. Rev. 14, 1.CrossRefGoogle Scholar
Hungate, R. E. (1957). Can. J. Microbiol. 3, 289.CrossRefGoogle Scholar
Koch, G. (1964). Z. Tierphys. Tierernähr. u. Futtermittelk. 19, 24.Google Scholar
Lawlor, M. J., Giesecke, D. & Walser-Kärst, K. (1966). Br. J. Nutr. 20, 373.Google Scholar
McCready, R. M., Guggolz, J., Silviera, V. & Owens, H. S. (1950). AnaZyt. Chem. 22, 1156.Google Scholar
McDougall, E. I. (1948). Biochem. J. 43, 99.CrossRefGoogle Scholar
MacPherson, M. J. (1953). J. Path. Bact. 66, 95.CrossRefGoogle Scholar
Warner, A. C. I. (1956). J. gen. Microbiol. 14, 527.Google Scholar
Warner, A. C. I. (1962). J. gen. Microbiol. 28, 119.CrossRefGoogle Scholar