Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T05:24:59.346Z Has data issue: false hasContentIssue false

Comparison of carbohydrate utilization in man using indirect calorimetry and mass spectrometry after an oral load of 100 g naturally-labelled [13C]glucose

Published online by Cambridge University Press:  09 December 2008

J. R. Ebiner
Affiliation:
Divisions de Biochimie Clinique et de Physiologie Clinique, Département de Médecine, CHUV, 1011 Lausanne, Switzerland, and Laboratoire Nestlé, 1814 La-Tour-de-Peilz, Switzerland
K. J. Acheson
Affiliation:
Divisions de Biochimie Clinique et de Physiologie Clinique, Département de Médecine, CHUV, 1011 Lausanne, Switzerland, and Laboratoire Nestlé, 1814 La-Tour-de-Peilz, Switzerland
A. Doerner
Affiliation:
Divisions de Biochimie Clinique et de Physiologie Clinique, Département de Médecine, CHUV, 1011 Lausanne, Switzerland, and Laboratoire Nestlé, 1814 La-Tour-de-Peilz, Switzerland
E. Maeder
Affiliation:
Divisions de Biochimie Clinique et de Physiologie Clinique, Département de Médecine, CHUV, 1011 Lausanne, Switzerland, and Laboratoire Nestlé, 1814 La-Tour-de-Peilz, Switzerland
M. J. Arnaud
Affiliation:
Divisions de Biochimie Clinique et de Physiologie Clinique, Département de Médecine, CHUV, 1011 Lausanne, Switzerland, and Laboratoire Nestlé, 1814 La-Tour-de-Peilz, Switzerland
E. Jéquier
Affiliation:
Divisions de Biochimie Clinique et de Physiologie Clinique, Département de Médecine, CHUV, 1011 Lausanne, Switzerland, and Laboratoire Nestlé, 1814 La-Tour-de-Peilz, Switzerland
J. P. Felber
Affiliation:
Divisions de Biochimie Clinique et de Physiologie Clinique, Département de Médecine, CHUV, 1011 Lausanne, Switzerland, and Laboratoire Nestlé, 1814 La-Tour-de-Peilz, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Carbohydrate (CHO) oxidation was measured simultaneously in a group of five normal subjects after an oral load of 100 g naturally-labelled [13C]glucose, using indirect calorimetry and mass spectrometry.

2. CHO utilization, calculated from the results of indirect calorimetry, increased 30 min after the glucose load to reach a peak at 90 min. It then decreased to reach basal values at 380 min. Cumulative total CHO oxidation at 480 min was 83±8g, and CHO oxidized above basal levels, 37±3 g.

3. Enrichment of expired carbon dioxide with 13C began at 60 min and maximum values were observed at 270 min. At 480 min, cumulative CHO oxidation measured by use of [13C]glucose was 29 g. The difference from calorimetric values can be attributed in part to the slow isotopic dilution in the glucose and bicarbonate pools.

4. Thus, approximately 30% of the glucose load was oxidized during the 8 h after its ingestion and this accounts for a significant part of the increased CHO oxidation (37 g), as measured by indirect calorimetry.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Baker, N., Schreeve, W. W., Shipley, R. A., Incefy, G. E. & Miller, M. (1954). J. biol. Chem. 211, 575.CrossRefGoogle Scholar
Beloff-Chain, A., Catanzaro, R., Chain, E. B., Masi, I., Pocchiari, F. & Rossi, C. (1955). Proc. R. Soc. 143, 481.Google Scholar
Craig, H. (1957). Geochim. cosmochim. Acta 12, 133.CrossRefGoogle Scholar
De Bodo, R. C., Steele, R., Altszuler, N., Dunn, A. & Bishop, J. S. (1963). Diabetes 12, 16.CrossRefGoogle Scholar
Dole, V. P. & Meinertz, H. (1960). J. biol. Chem. 235, 2595.CrossRefGoogle Scholar
Eaton, P. & Steinberg, D. (1961). J. Lipid Res. 2, 376.CrossRefGoogle Scholar
Felber, J. P., Magnenat, G., Casthélaz, M., Geser, C. A., Müller-Hess, R., de Kalbermatten, N., Ebiner, J. R., Curchod, B., Pittet, Ch. & Jéquier, E. (1977). Diabetes 26, 693.CrossRefGoogle Scholar
Felig, Ph., Wahren, J. & Hendler, R. (1975). Diabetes 24, 468.CrossRefGoogle Scholar
Gomez, F., Jéquier, E., Chabot, V., Büber, V. & Felber, J. P. (1972). Metabolism 21, 381.CrossRefGoogle Scholar
Hales, C. N. & Randle, P. J. (1963). Biochem. J. 88, 137.CrossRefGoogle Scholar
Heindel, J. J., Cushman, S. W. & Jeanrenaud, B. (1974). Am. J. Physiol. 226, 16.CrossRefGoogle Scholar
Lefebvre, P., Mosora, F., Lacroix, M., Luyckx, A., Lopez-Habib, G. & Duchesne, J. (1975). Diabetes 24, 185.CrossRefGoogle ScholarPubMed
Lusk, G. (1924). J. biol. Chem. 59, 41.CrossRefGoogle Scholar
Madison, L. L., Mebane, D., Lecocq, F. & Combes, B. (1963). Diabetes 12, 8.CrossRefGoogle Scholar
Metropolitan Life Insurance Company (1959). Stat. Bull. 40, 40.Google Scholar
Mosora, F., Lefebvre, P., Pirnay, F., Lacroix, M., Luyckx, A. & Duchesne, J. (1976). Metabolism 25, 1575.CrossRefGoogle Scholar
Müller-Hess, R., Geser, C., Pittet, Ph., Chappuis, P., Jéquier, E. & Felber, J. P. (1975). Diabetes Metab. 1, 151.Google Scholar
Searle, G. L. & Chaikoff, I. L. (1952). Am. J. Physiol. 170, 456.CrossRefGoogle Scholar
Searle, G. L., Strisower, E. H. & Chaikoff, I. L. (1956). Am. J. Physiol. 185, 589.CrossRefGoogle Scholar
Slein, M. W. (1965). In Methods of Enzymatic Analysis, 2nd ed., p. 117 (Bergmeyer, H. W., editor). Weinheim: Verlag Chemie.CrossRefGoogle Scholar
Smith, B. N. & Epstein, S. (1971). Pl. Physiol. 47, 380.CrossRefGoogle Scholar
Steele, R., Altszuler, N., Wall, J. S., Dunn, A. & De Bodo, R. C. (1959). Am. J. Physiol. 196, 221.CrossRefGoogle Scholar
Steele, R., Bjerknes, C., Rathgeb, I. & Altszuler, N. (1968). Diabetes 17, 415.CrossRefGoogle Scholar
Steele, R., Wall, J. S., De Bodo, R. C. & Altszuler, N. (1956). Am. J. Physiol. 187, 15.CrossRefGoogle Scholar
Steele, R., Winkler, B., Rathgeb, I., Bjerknes, C. & Altszuler, N. (1968). Am. J. Physiol. 214, 313.CrossRefGoogle Scholar
Vranic, M. & Wrenshall, G. A. (1969). Endocrinology 85, 165.CrossRefGoogle Scholar