Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T10:50:18.510Z Has data issue: false hasContentIssue false

A comparison of methods for the estimation of microbial nitrogen in duodenal digesta of sheep

Published online by Cambridge University Press:  09 March 2007

R. C. Siddons
Affiliation:
The Grassland Research Institute, Hurley, Maidenhead, Berkshire SL6 5LR
D. E. Beever
Affiliation:
The Grassland Research Institute, Hurley, Maidenhead, Berkshire SL6 5LR
J. V. Nolan
Affiliation:
The Grassland Research Institute, Hurley, Maidenhead, Berkshire SL6 5LR
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Six sheep, each fitted with a rumen cannula and re-entrant cannulas in the proximal duodenum and distal ileum, were given two diets (600 g dry matter (DM)/d) consisting of either grass silage (32·1 g nitrogen/kg DM) or dried grass (18·3 g N/kg DM). A net loss of N occurred between mouth and duodenum with the silage diet, indicating extensive ruminal degradation of dietary N, compared with a net gain on the dried-grass diet. Consequently, despite higher N intakes when silage was given, N flow at the duodenum was similar for both diets.

2. The proportion of microbial N in duodenal digesta N was estimated using diaminopimelic acid (DAPA), [35S]methionine (35S), 15N-enriched non-ammonia-N (15NAN) and amino acid profiles (AAP) as microbial markers. Isotopic labelling of rumen micro-organisms was achieved by intraruminal infusions of Na235SO4 and (15NH4)2SO4.

3. A comparison of all methods was made based on the marker concentrations in microbial fractions isolated by differential centrifuagation of strained rumen contents. With both diets, DAPA gave the highest estimates and AAP the lowest. Estimates based on 35S and 15NAN were intermediate and did not differ significantly (P > 0·05).

4. For the 15NAN, 35S and AAP methods, the effect of site of sampling of the microbial fraction, i.e. from rumen contents or duodenal digesta, was examined and in all instances mean estimates based on duodenally-derived microbes were higher. However, the differences were significant for only 15NAN with both diets (P < 0·001), for 35S with the dried grass (P < 0·05), and for AAP with the silage (P < 0·05). Estimates based on duodenally-derived microbes were higher (P < 0·05) using 15NAN than those obtained using 35S with both diets.

5. Depending on the method used for estimating microbial N, estimates of the efficieny ofmicrobial N synthesis in the rumen (g microbial N flow at duodenum/kg organic matter apparently digested in the rumen) ranged between 16 and 38 for the silage diet and 10 and46 for the dried grass diet. Similarly, estimates of feed N degradability in the rumen ranged between 0·62 and 0·97 for the silage and 0·00 and 0·93 for the dried grass.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

REFERENCES

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Farnham Royal: Commonwealth Agricultural Bureau.Google Scholar
Amos, H. E., Evans, J. J. & Burdick, D. (1979). J. Anim. Sci. 48, 666.CrossRefGoogle Scholar
Beever, D. E., Cammell, S. B. & Wallace, A. S. (1974). Proc. Nutr. Soc. 33, 73A.Google Scholar
Beever, D. E., Harrison, D. G., Thomson, D. J., Cammell, S. B. & Osbourn, D. F. (1974). Br. J. Nutr. 32, 99.CrossRefGoogle Scholar
Beever, D. E., Kellaway, R. C., Thomson, D. J., MacRae, J. C., Evans, C. C. & Wallace, A. S. (1978). J. agric. Sci., Camb. 90, 157.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J., Cammell, S. B. & Harrison, D. G. (1977). J. agric. Sci., Camb. 88, 61.CrossRefGoogle Scholar
Canaway, R. J. & Thomson, D. J. (1977). Tech. Rep. Grassld Res. Inst. Hurley no. 24.Google Scholar
Chow, R. B. & Kassell, B. (1968). J. biol. Chem. 243, 1718.CrossRefGoogle Scholar
Czerkawski, J. W. (1976). J. Sci. Fd Agric. 27, 621.CrossRefGoogle Scholar
Evans, C. C.MacRae, J. C. & Wilson, S. (1977). J. agric. Sci., Camb. 89, 17.CrossRefGoogle Scholar
Evans, R. A., Axford, R. F. E. & Offer, N. W. (1975). Proc. Nutr. Soc. 34, 65A.Google Scholar
Harrop, C. J. F. (1974). J. agric. Sci., Camb. 83, 249.CrossRefGoogle Scholar
Kempton, T. J., Nolan, J. V. & Leng, R. A. (1979). Br. J. Nutr. 42, 303.CrossRefGoogle Scholar
Kennedy, P. M. & Milligan, L. P. (1978). Br. J. Nutr. 39, 105.CrossRefGoogle Scholar
Ling, J. R. & Buttery, P. J. (1978). Br. J. Nutr. 39, 165.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1969). Br. J. Nutr. 23, 671.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1971). Proc. Nutr. Soc. 31, 24A.Google Scholar
McDougall, E. T. (1948). Biochem. J. 43, 99.CrossRefGoogle Scholar
MacGregor, C. A., Sniffen, C. J. & Hoover, W. H. (1978). J. Dairy Sci. 61, 566.CrossRefGoogle Scholar
McMeniman, N. P. (1975). Aspects of nitrogen digestion in the ruminant. PhD Thesis, University of Newcastle upon Tyne.Google Scholar
McMeniman, N. P., Ben Ghedalia, D. & Elliot, R. (1976). Br. J. Nutr. 36, 571.CrossRefGoogle Scholar
Mathers, J. C. & Miller, E. L. (1980). Br. J. Nutr. 43, 503.CrossRefGoogle Scholar
Mathison, G. W. & Milligan, L. P. (1971). Br. J. Nutr. 25, 351.CrossRefGoogle Scholar
Moore, S. (1963). J. biol. Chem. 238, 235.CrossRefGoogle Scholar
Moore, S. & Stein, W. H. (1951). J. biol. Chem. 192, 663.CrossRefGoogle Scholar
Nikolic, J. A. & Javanovic, M. (1973). J. agric. Sci., Camb. 81, 1.CrossRefGoogle Scholar
Nolan, J. V. & Leng, R. A. (1972). Br. J. Nutr. 27, 177.CrossRefGoogle Scholar
Pilgrim, A. F., Gray, F. V., Weller, R. A. & Belling, C. B. (1970). Br. J. Nutr. 24, 589.CrossRefGoogle Scholar
Rhuland, L. E. (1960). Nature, Lond. 185, 224.CrossRefGoogle Scholar
Schingoethe, D. J. & Ahrar, M. (1979). J. Dairy Sci. 62, 925.CrossRefGoogle Scholar
Siddons, R. C., Beever, D. E., Nolan, J. V., McAllan, A. B. & MacRae, J. C. (1979). Annls Rech. Vet. 10, 286.Google Scholar
Smith, R. H., McAllan, A. B., Hewitt, D. & Lewis, P. E. (1978). J. agric. Sci., Camb. 90, 557.CrossRefGoogle Scholar
Smith, R. H., Salter, D. N., Sutton, J. D. & McAllan, A. B. (1975). Tracer Studies on Non-Protein Nitrogen for Ruminants, vol. 2, p. 81. Vienna: International Atomic Energy Authority.Google Scholar
Synge, R. L. M. (1953). J. gen. Microbiol. 9, 407.Google Scholar
Tamminga, S. (1978). In Ruminant Digestion and Feed Evaluation, p. 5.1 [Osbourn, D. F., Beever, D. E. and Thomson, D. J., editors]. London: Agricultural Research Council.Google Scholar
Tan, T. N., Weston, R. H. & Hogan, J. P. (1971). Int. J. appl. Radiat. Isotopes 22, 301.CrossRefGoogle Scholar
Thomson, D. J., Beever, D. E., Coehlo da Silva, J. F. & Armstrong, D. G. (1972). Br. J. Nutr. 28, 31.CrossRefGoogle Scholar
Walker, D. J. & Nader, C. J. (1975). Aust. J. agric. Res. 26, 689.CrossRefGoogle Scholar
Weller, R. A., Gray, F. V. & Pilgrim, A. F. (1958). Br. J. Nutr. 12, 421.CrossRefGoogle Scholar
Work, E. & Dewey, D. L. (1953). J. gen. Microbiol. 9, 394.CrossRefGoogle Scholar