Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T07:16:13.082Z Has data issue: false hasContentIssue false

Determination of digestible and available amino acids in meat meal using conventional and caecectomized cockerels or chick growth assays

Published online by Cambridge University Press:  09 March 2007

Carl M. Parsons
Affiliation:
Department of Animal Sciences, University of Illinois Urbana, Illinois 61801, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The present study was designed to compare true digestible amino acid values for meat meal with available amino acid values. True digestible values were determined with a 48 h excreta collection assay using conventional (CONV) and caecectomized (CEC) cockerels. Available values for lysine, methionine and cystine were estimated by chick growth assays.

2. True digestibilities of all sixteen measured amino acids (expressed as a proportion of the total) were lower for CEC than for CONV cockerels, with the average difference being approximately 0.10.

3. Chick growth assays based on total weight gain indicated that the availabilities of amino acids expressed as a proportion of the total amino acids in meat meal were: 0.70 for lysine, 0.75 for methionine and 0.48 for cystine. Partitioning weight gains to reflect only growth attributable to supplemental crystalline amino acid or meat meal intake consistently yielded higher availability values than when total weight gains were used.

4. True digestibility values determined with CEC cockerels were in better agreement with chick available values than were true digestibility values determined with CONV cockerels.

5. The amounts of amino acids present in the caeca of meat meal-fed CONV cockerels at 48 h after feeding were small when compared with those levels voided in the excreta and those levels consumed in the feed.

6. Multiple regression analyses of excreta and caecal amino acid profiles at 12 and 48 h after feeding suggested that significant amounts of non-digested dietary amino acids flowed into the caeca and were subsequently metabolized by the caecal microflora.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Achinewhu, S. C. & Hewitt, D. (1979). British Journal of Nutrition 41, 559571.Google Scholar
Annison, E. F., Hill, K. J. & Kenworthy, R. (1968). British Journal of Nutrition 22, 207216.Google Scholar
Association of official analytical chemists (1975). Official methods of analysis, 12th ed. Washington, dc: Association of official analytical chemists.Google Scholar
Baker, D. H. (1978). Proceedings of Maryland Nutrition Conference, pp. 112.Google Scholar
Baker, D. H., Blittenthal, R. C., Boebel, K. P., Czarnecki, G. L., Southern, L. L. & Willis, G. M. (1981). Poultry Science 60, 18651872.CrossRefGoogle Scholar
Baker, D. H., Robbins, K. R. & Buck, J. S. (1979). Poultry Science 58, 749750.CrossRefGoogle Scholar
Boebel, K. P. & Baker, D. H. (1982). Poultry Science 61, 11671175.Google Scholar
Combs, G. F., Bossard, E. H. & Childs, G. R. (1968). Feedstuffs 40(8), 3637.Google Scholar
de Meulenaere, H. J. H., Chen, M.-L. & Harper, A. E. (1967). Journal of Agricultural and Food Chemistry 15, 310317.CrossRefGoogle Scholar
Eggum, B. O. (1970). Acta Agriculturea Scandinavica 20, 230234.Google Scholar
Eggum, B. O. & Chwalibog, A. (1983). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 49, 104114.Google Scholar
Eggum, B. O., Thorbek, G., Beames, R. M., Chwalibog, A. & Henckel, S. (1982). British Journal of Nutrition 48, 161175.CrossRefGoogle Scholar
Elwell, D. & Soares, J. H. (1975). Poultry Science 54, 7885.Google Scholar
Engster, H. M., Cave, N. A., Likuski, H., McNab, J., Parsons, C. M. & Pfaff, F. E. (1985). Poultry Science 64, 487498.CrossRefGoogle Scholar
Finney, D. J. (1978). Statistical method of biological assay, 3rd ed. High wycombe, bucks; Charles griffin & co. ltd.Google Scholar
Johnston, J. & Coon, C. N. (1979 a). Poultry Science 58, 919927.Google Scholar
Johnston, J. & Coon, C. N. (1979 b). Poultry Science 58, 12711273.CrossRefGoogle Scholar
Katz, R. S. & Baker, D. H. (1975). Poultry Science 54, 584591.Google Scholar
Kessler, J. W., Nguyen, T. H. & Thomas, O. P. (1981). Poultry Science 60, 15761577.CrossRefGoogle Scholar
Kessler, J. W. & Thomas, O. P. (1981). Poultry Science 60, 26392647.Google Scholar
Mendes-Periera, E., Pion, R. & Prugnaud, J. (1977). Annals for Biology of Animal Biochemistry and Biophysics 17, 625631.Google Scholar
Mortensen, A. (1984). In Current perspectives in microbial ecology, pp. 273278 [Klus, M. J. and Reddy, C. A., editors]. Washington, dc: American society of microbiology.Google Scholar
National research council (1977). Nutrient requirements of domestic animals, vol. 1, Nutrient requirements of poultry. Washington, dc: National academy of sciences.Google Scholar
Netke, S. P. & Scott, H. M. (1970). Journal of Nutrition 100, 281288.Google Scholar
Parsons, C. M. (1984). British Journal of Nutrition 51, 541548.CrossRefGoogle Scholar
Parsons, C. M. (1985). Journal of Agricultural Science, Cambridge 104, 469472.CrossRefGoogle Scholar
Parsons, C. M., Edmonds, M. S. & Baker, D. H. (1984). Poultry Science 63, 24382443.Google Scholar
Parsons, C. M., Potter, L. M. & Bliss, B. A. (1982). Poultry Science 61, 22412246.CrossRefGoogle Scholar
Parsons, C. M., Potter, L. M. & Brown, R. D. Jr (1981). Poultry Science 60, 26872696.Google Scholar
Parsons, C. M., Potter, L. M. & Brown, R. D. Jr (1983). Poultry Science 62, 483489.CrossRefGoogle Scholar
Robbins, K. R. & Baker, D. H. (1980). Journal of Nutrition 110, 907915.CrossRefGoogle Scholar
Salter, D. N. (1973). Proceedings of the Nutrition Society 32, 6571.Google Scholar
Salter, D. N. & Coates, M. E. (1971). British Journal of Nutrition 26, 5569.Google Scholar
Salter, D. N., Coates, M. E. & Hewitt, D. (1974). British Journal of Nutrition 31, 307318.Google Scholar
Salter, D. N. & Fulford, R. J. (1974). British Journal of Nutrition 32, 625637.Google Scholar
Sasse, C. E. & Baker, D. H. (1974). Poultry Science 53, 652662.Google Scholar
Sibbald, I. R. (1976). Poultry Science 55, 303308.Google Scholar
Sibbald, I. R. (1979). Poultry Science 58, 668673.Google Scholar
Sibbald, I. R. (1983). Animal research centre, Ottawa. Contribution 83–1, pp. 1621. Ottawa, canada: Animal research centre.Google Scholar
Soares, J. H. Jr, Miller, D., Fitz, N. & Sanders, M. (1971). Poultry Science 50, 11341143.Google Scholar
Steel, R. G. D. & Torrie, J. H. (1960). Principles and procedures of statistics. New york: Mcgraw-hill book co., inc.Google Scholar
Terpstra, K. (1977). Proceedings of Fifth International Symposium on Amino Acids, pp. 18. Budapest.Google Scholar
Zebrowska, T. (1973). Roczniki Nauk Rolniczych Series B, 95, 8589.Google Scholar