Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T06:22:57.183Z Has data issue: false hasContentIssue false

The digestion of fibre by pigs

1. The effects of amount and type of fibre on apparent digestibility, nitrogen balance and rate of passage

Published online by Cambridge University Press:  24 July 2007

George Stanogias
Affiliation:
School of Agriculture and Forestry, University of Melbourne, Parkville, Victoria 3052, Australia
G. R. Pearcet
Affiliation:
School of Agriculture and Forestry, University of Melbourne, Parkville, Victoria 3052, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of the amount and the type of dietary fibre on the apparent digestibility (AD) by growing pigs of neutral-detergent fibre (NDF) and NDF components, on nitrogen balance and on the rate of passage of digesta were studied using a semi-purified basal diet and fibre in the forms of soya-bean hulls, lupin (Lupinus sp.) hulls, pea (Pisum sativum) hulls, wheat bran, maize hulls, maize cobs, oat hulls and lucerne (Medicago sativa) stems.

2. Both the amount and the type of dietary fibre significantly influenced the AD of dietary dry matter, N and energy. The AD of NDF and of NDF components was markedly affected by the type and the amount of fibre in the diet. The proportion of NDF digested ranged from 0.016 to 0.905, of cellulose from 0.026 to 0.931 and of hemicellulose from 0.010 to 0.999.

3. N retention by the pigs ranged from 12.9 to 25.8 g/d and with some fibres there was a tendency towards increased N retention with increasing intakes of NDF.

4. Rate of passage of digesta, expressed as the 50 and 95% excretion times of stained feed particles, ranged from 22.2 to 85.1 h and 40.0 to 117.1 h respectively. Large individual variations in rate of passage occurred but, in general, the rate of passage tended to increase with increasing intakes of NDF. No strong associations between the rate of passage of digesta and apparent digestibility of NDF components were observed.

5. The results suggest that the extent of fibre digestibility depends predominantly on the origin of the fibre and to a lesser extent on the amount of fibre in the diet.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

REFERENCES

American Society of Agricultural Engineers (1967). Agricultural Engineers' Yearbook. Merhod of Determining Modulus of Uniformity and Modulus of Fineness of Ground Feed. ASAE Recommendation: ASAE 241.1, p. 301.Google Scholar
Association of Official Agricultural Chemists (1975). Official Methods of Analysis, 12th ed. Washington, DC: Association of Official Agricultural Chemists.Google Scholar
Bailey, R. W., Mills, S. E. & Hove, E. L. (1974). Journal of the Science of Food and Agriculture 25, 955961.CrossRefGoogle Scholar
Baird, D. M., McCampbell, H. C. & Allison, J. R. (1969). Journal of Animal Science 29, 129130, Abstr.Google Scholar
Baird, D. M., McCampbell, H. C. & Allison, J. R. (1970). Journal of Animal Science 31, 518525.CrossRefGoogle Scholar
Castle, E. J. & Castle, M. E. (1956). Journal of Agricultural Science, Cambridge 47, 196204.CrossRefGoogle Scholar
Castle, E. J. & Castle, M. E. (1957). Journal of Agricultural Science, Cambridge 49, 106112.CrossRefGoogle Scholar
Cole, D. J. A., Duckworth, J. E. & Holmes, W. (1967 a). Animal Production 9, 141148.Google Scholar
Cole, D. J. A., Duckworth, J. E. & Holmes, W. (1967 b). Animal Production 9, 149154.Google Scholar
Cowling, E. B. & Brown, W. (1969). In Celluluses and their Applications, p. 152 [Hajny, G. J. and Reese, E. T., editors], Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Cunningham, H. M., Friend, D. W. & Nicholson, J. W. G. (1962). Canadian Journal of Animal Science 42, 167175.CrossRefGoogle Scholar
DeGoey, L. W. & Ewan, R. D. (1975). Journal of Animal Science 40, 10451051.CrossRefGoogle Scholar
Eastwood, M. A. & Kay, R. M. (1979). American Journal of Clinical Nutrition 32, 364367.CrossRefGoogle Scholar
Farrell, D. J. (1973). Animal Production 16, 4347.Google Scholar
Farrell, D. J. & Johnson, K. A. (1972). Animal Production 14, 209217.Google Scholar
Forbes, R. M. & Hamilton, T. S. (1952). Journal of Animal Science 11, 480490.CrossRefGoogle Scholar
Friend, D. W., Cunningham, H. M. P. & Nicholson, J. W. G. (1963). Canadian Journal of Animal Science 43, 174181.CrossRefGoogle Scholar
Fuller, M. F. & Crofts, R. M. J. (1977). British Journal of Nutrition 38, 479488.CrossRefGoogle Scholar
Gargallo, J. & Zimmerman, D. R. (1980). Journal of Animal Science 51, 121126.CrossRefGoogle Scholar
Gargallo, J. & Zimmerman, D. R. (1981). Journal of Animal Science 53, 395402.CrossRefGoogle Scholar
Goering, H. K. & Van Soest, P. J. (1970). Forage Fiber Analysis. Agricultural Handbook no. 379. Washington, DC: Department of Agriculture.Google Scholar
Henry, Y. & Etienne, M. (1969). Annales de Zootechnie 18, 337340.CrossRefGoogle Scholar
Hilliard, E. P. & Smith, J. D. (1979). Analyst 104, 313322.CrossRefGoogle Scholar
Kass, M. L., Van Soest, P. J., Pond, W. G., Lewis, G. & McDowell, R. E. (1980). Journal of Animal Science 50, 175191.CrossRefGoogle Scholar
Kennelly, J. J. & Aherne, F. X. (1980 a). Canadian Journal of Animal Science 60, 385393.CrossRefGoogle Scholar
Kennelly, J. J, & Aherne, F. X. (1980 b). Canadian Journal of Animal Science 60, 717726.CrossRefGoogle Scholar
Keys, J. E. Jr & DeBarthe, J. V. (1974). Journal of Animal Science 39, 5356.CrossRefGoogle Scholar
Keys, J. E. Jr, Van Soest, P. J. & Young, E. P. (1969). Journal of Animal Science 29, 1115,CrossRefGoogle Scholar
Keys, J. E. Jr, Van Soest, P. J. & Young, E. P. (1970). Journal of Animal Science 31, 11721177.CrossRefGoogle Scholar
King, R. H. & Taverner, M. R. (1975). Animal Production 21, 275284.Google Scholar
Kornegay, E. T. (1978). Journal of Animal Science 47, 12721280.CrossRefGoogle Scholar
Lindgren, E. (1975). Swedish Journal of Agricultural Research 5, 159161.Google Scholar
McLeod, M. N. (1974). Nutrition Abstracts and Reviews 55, 804815.Google Scholar
Mason, V. C. & Palmer, R. (1973). Acta Agriculturae Scandinavica 23, 141150.CrossRefGoogle Scholar
Pals, D. A. & Ewan, R. D. (1978). Journal of Animal Science 46, 402408.CrossRefGoogle Scholar
Skipitaris, C. N., Warner, R. D. & Loosli, J. K. (1957). Journal of Animal Science 16, 5561.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1973). Statistical Methods, 6th ed. Ames, Iowa: Iowa State University.Google Scholar
Van Soest, P. J. (1975). In Proceedings of the IV International Symposium on Ruminant Physiology, pp. 351365. [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Van Soest, P. J. (1978). American Journal of Clinical Nutrition 31, 512520.Google Scholar
Van Soest, P. J. & McQueen, R. W. (1973). Proceedings ofthe Nutrition Society 32, 123130.CrossRefGoogle Scholar
Van Soest, P. J. & Robertson, J. B. (1980). In Standardization of Analytical Methodology for Feeds, Pub. IDRC-134e [Pigden, W.J., Balch, C. C. and Graham, M., editors]. Ottawa, Canada: International Development Research Center.Google Scholar
Whiting, F. & Bezeau, L. M. (1957 a). Canadian Journal of Animal Science 37, 95105.CrossRefGoogle Scholar
Whiting, F. & Bezeau, L. M. (1957 b). Canadian Journal of Animal Science 37, 106113.CrossRefGoogle Scholar