Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T02:20:01.440Z Has data issue: false hasContentIssue false

A double stable isotope technique for measuring iron absorption in infants

Published online by Cambridge University Press:  17 March 2008

Peter Kastenmayer
Affiliation:
Nestlé Research Centre, PO Box 44, CH-I000 Lausanne 26, Switzerland
Lena Davidsson
Affiliation:
Nestlé Research Centre, PO Box 44, CH-I000 Lausanne 26, Switzerland
Pilar Galanz
Affiliation:
Centre de Recherche sur les Anémies Nutritionnelles, CNAM, 2 rue Conté, F-75003 Paris, France
Françise Cherouvrier
Affiliation:
Centre de Recherche sur les Anémies Nutritionnelles, CNAM, 2 rue Conté, F-75003 Paris, France
Serge Hercberg
Affiliation:
Centre de Recherche sur les Anémies Nutritionnelles, CNAM, 2 rue Conté, F-75003 Paris, France
Richard F. Hurrell
Affiliation:
Nestlé Research Centre, PO Box 44, CH-I000 Lausanne 26, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A stable isotope technique has been developed which uses 57Fe and 58Fe as labels and which enables the simultaneous measurement of Fe absorption from two test meals in infants. The method was evaluated by measuring Fe absorption from a commercial whey-adjusted infant formula in nine healthy infants aged 13–25 weeks. Each infant was fed 210 ml formula, labelled with either 57Fe or 58Fe, on four consecutive mornings, in random order. The total Fe content in each feed was 2.5 mg Fe; either as 2.5 mg 57Fe, or 0 6 mg 58Fe plus 1.9 mg Fe with normal isotopic composition. Isotopic enrichment of Fe in erythrocytes was measured by thermal ionization mass spectrometry 14 d after the last administration, and Fe absorption was calculated based on isotope ratio shifts, total circulating Fe and intake of each isotope. Geometric mean absorption for the 57Fe and 58Fe labels was 6.72 and 658% respectively, and the absorption of the two isotopes was not significantly different (Student's paired t test). By this technique, paired comparisons of Fe absorption can be obtained and systematic studies of the influence of dietary factors on Fe absorption during infancy can he conducted.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Barnes, I. L., Murphy, T. J. & Shields, W. R. (1973). Lead separation by anodic decomposition and isotope ratio mass spectrometry of microgram and smaller samples. Analytical Chemistry 45, 18811884.CrossRefGoogle Scholar
Beer, B. & Heumann, K. G. (1992). Trace analysis of U, Th and other heavy metals in high purity aluminium with isotope dilution mass spectrometry. Fresenius Zeitschrqt fir Analytische Chemie 343, 141745.Google Scholar
Bratteby, L. E. (1968). Studies on erythro-kinetics in infancy. XI. The change in the circulating red cell volume during the first five months of life. Acta Paediatrica Scandinavica 57, 215224.CrossRefGoogle ScholarPubMed
Cook, J. D., Layrisse, M., Martinez-Torres, C., Walker, R., Monsen, E. & Finch, C. A. (1972). Food iron absorption measured by an extrinsic tag. Journal of Clinical Inve.rtigarion 51, 805815.CrossRefGoogle ScholarPubMed
Dallman, P. R., Siimes, M. A. & Stekel, A. (1980). Iron deficiency in infancy and childhood. American Journal of Clinical Nutrition 33, 86118.CrossRefGoogle ScholarPubMed
De Bitvre, P. & Barnes, I. L. (1985). Table of the isotopic composition of the elements as determined by mass spectrometry. international Journal of Mass Spectrometry and Ion Processes 65, 211230.CrossRefGoogle Scholar
Dixon, W. J. & Massey, F. J. (1969). Introduction to Statistical Analysis, pp. 328330. New York: McGraw Hill.Google Scholar
Eagles, J., Fairweather-Tait, S. J. & Self, R. (1985). Stable isotope ratio mass spectrometry for iron bioavailability studies. Analytical Chemistry 57, 469471.CrossRefGoogle ScholarPubMed
Fasset, J. D., Powell, L. J. & Moore, L. J. (1984). Determination of iron in serum and water by resonance ionisation isotope dilution mass spectrometry. Analytical Chemistry 56, 22282233.CrossRefGoogle Scholar
Fomon, S. J., Janghorbani, M., Ting, B. T. G., Ziegler, E. E., Rogers, R. R., Nelson, S. E., Ostergaard, L. S. & Edwards, B. B. (1988). Erythrocyte incorporation of ingested 58-iron by infants. Pediatric Research 24, 2024.CrossRefGoogle ScholarPubMed
Fomon, S. J., Ziegler, E. E., Rogers, R. R., Nelson, S. E., Edwards, B. E., Guy, P. G., Erve, C. J. & Janghorbani, M. (1989). Iron absorption from infant foods. Pediatric Research 26, 250254.CrossRefGoogle ScholarPubMed
Garby, L., Sjolin, S. & Vuille, J. C. (1963). Studies on erythro-kinetics in infancy. 111. Disappearance from plasma and red cell uptake of radioactive iron injected intravenously. Aria Paediatrica 52, 537553.CrossRefGoogle Scholar
Gotz, A. & Heumann, K. G. (1987). Heavy metal trace determination with a compact thermal ionisation quadrupole mass spectrometer. Part 2. Analysis of food samples. Fresenius Zeitschrift fur Analytische Chemie 326, 118122.CrossRefGoogle Scholar
Gotz, A. & Heumann, K. G. (1988). Iron isotope ratio measurements with the thermal ionisation technique using a compact quadrupole mass spectrometer. International Journal of Mass Spectrometry and Ion Processes 83, 319330.CrossRefGoogle Scholar
Hallberg, L. & Björn-Rasmussen, E. (1972). Determination of iron absorption from whole diet. A new two-poolmodel using two radioiron isotopes given as haem and non-haem iron. Scandinavian Journal of Haematology 9, 193197.CrossRefGoogle Scholar
Janghorbani, M. & Ting, B. T. G. (1990). Stable isotope methods for studies of mineral/trace element metabolism. Journal of Nutritional Biochemistry 1, 419.CrossRefGoogle ScholarPubMed
Rios, E., Hunter, R. E., Cook, J. D., Smith, N. J. & Finch, C. A. (1975). The absorption of iron as supplements in infant cereal and infant formulas. Pediatrics 55, 686689.CrossRefGoogle ScholarPubMed
Sevenich, G. J. & Fritz, J. S. (1985). Effect of complexing agents on the chromatographic separation of polyvalent cations. Journal of Chromatography 347, 147154.CrossRefGoogle Scholar
Stekel, A, Olivares, M., Pizarro, F., Chadud, P., Lopez, I. & Amar, M. (1986). Absorption of fortification iron from milk formulas in infants. American Journal of Clinical Nutrition 43, 917922.CrossRefGoogle ScholarPubMed
Turnlund, J. R. & Keyes, W. R. (1990). Automated analysis of stable isotopes of zinc, copper, iron, calcium and magnesium by thermal ionization mass spectrometry using double isotope dilution for tracer studies in humans. Journal of Micronutrient Anulysis 7, 117145.Google Scholar