Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T07:26:19.767Z Has data issue: false hasContentIssue false

Effect of dietary composition and cold exposure on non-shivering thermogenesis in young pigs and its alteration by the β-blocker propranolol

Published online by Cambridge University Press:  08 December 2008

M. J. Dauncey
Affiliation:
ARC Institute of Animal Physiology and MRC Dunn Calorimetry Group, Rabraham, CambridgeCB2 4AT
D. L. Ingram
Affiliation:
ARC Institute of Animal Physiology and MRC Dunn Calorimetry Group, Rabraham, CambridgeCB2 4AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Young pigs were fed on three diets consecutively, each diet being given for 1 week. The diets were given in random order as (g pig feed/kg body-weight): (a) 20, (b) 60, (c) 20 plus a supplement with the energy equivalent of 40 g pig feed/kg. The supplements included desiccated coconut, fish meal and glucose.

2. At the end of each week resting metabolic rate, beginning 12–14 h after feeding, was measured overnight using an open-circuit respiration chamber at thermoneutrality.

3. The oxygen consumption of pigs on the 60 g/kg diet was always higher than on the 20 g/kg diet. The addition of desiccated coconut, or fish meal also increased metabolic rate; whereas with added glucose, O2 consumption tended to be even lower than on 20 g/kg alone.

4. The administration of the β-blocker propranolol to pigs on ad lib. food intake reduced the rate of overnight resting O2 consumption, measured from 10 until 20 h after feeding, by 12%, but it had no effect on O2 consumption when the intake was 20 g feed/kg. Exposure to mild cold (15°) caused an increase in O2 consumption and this was reduced by 14% after injection of propranolol.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Apfelbaum, M., Bostsarron, J. & Lacatis, D. (1971). Am. J. clin. Nutr. 24, 1405.CrossRefGoogle Scholar
Benedict, F. G. & Ernmes, L. E. (1912). Am. J. Physiol. 30, 197.CrossRefGoogle Scholar
Blaxter, K. L. (1971). Fedn Proc. Fedn Am. Socs. exp. Biol. 30, 1436.Google Scholar
Burse, R. L., Goldman, R. F., Danforth, E., Horton, E. S. & Sims, E. A. H. (1977). Fedn Proc. Fedn Am. Socs. exp. Biol. 36, 546 Abstr. 1456.Google Scholar
Cairnie, A. B. & Pullar, J. D. (1959). Br. J. Nutr. 13, 431.CrossRefGoogle Scholar
Clarke, M. G., Bloxharn, D. P., Holland, P. C. & Lardy, H. A. (1973). Biochem. J. 134, 589.CrossRefGoogle Scholar
Clarke, M. G., Williams, C. H., Pfeifer, W. F., Bloxharn, D. P., Holland, P. C., Taylor, C. A. & Lardy, H. A. (1973). Nature, Lond. 245, 99.CrossRefGoogle Scholar
Close, W. H., Mount, L. E. & Start, I. (1971). Anim. Prod. 13, 285.Google Scholar
Elwyn, D. H., Gump, F. E., Iles, M., Long, C. L. & Kinney, J. M. (1978). Metabolism 27, 325.CrossRefGoogle Scholar
Evans, S. E. & Ingram, D. L. (1977). J. Physiol, Lond. 264, 511.CrossRefGoogle Scholar
Garrow, J. S. & Hawes, S. F. (1972). J. Nutr. 27, 211.CrossRefGoogle Scholar
Glick, Z., Shvartz, E., Magazanik, A. & Modan, M. (1977). Am. J. clin. Nutr. 30, 1026.CrossRefGoogle Scholar
Goldrnan, R. F., Haisrnan, M. F., Bynurn, G., Horton, E. S. & Sirns, E. A. H. (1975). In Obesity in Perspective, p. 165 [ Bray, G. A., editor]. Washington DC: U.S. Government Printing Office.Google Scholar
Graham, N. McC., Wainman, F. W., Blaxter, K. L. & Armstrong, D. G. (1959). J. agric. Sci., Camb. 52, 13.CrossRefGoogle Scholar
Hirnrns-Hagen, J. (1972). In Handbook of Experimental Pharmacology, vol. 33, p. 363 [Blaschko, H. and Muscholl, E., editors]. Berlin: Springer Verlag.Google Scholar
Hodgrnan, C. D. (1962). Editor of Handbook of Chemistry and Physics. Cleveland, Ohio: The Chemical Rubber Publishing Co.Google Scholar
Ingrarn, D. L. & Kaciuba-Uscilko, H. (1977). J. Physiol., Lond. 270, 431.CrossRefGoogle Scholar
Jansky, L. (1973). Biol. Rev. 48, 85.CrossRefGoogle Scholar
Kaciuba-Uscilko, H. & Ingrarn, D. L. (1976). Comp. Biochem. Physiol. 56C, 53.Google Scholar
Krebs, H. A. (1964). In Mammalian Protein Metabolism, vol. 1, p. 125 [Munro, H. N. and Allison, J. B., editors]. New York: Academic Press.CrossRefGoogle Scholar
LeBlanc, J. & Mount, L. E. (1968). Nature, Lond. 217, 77.CrossRefGoogle Scholar
Lusk, G. (1928). The Science of Nutrition, 4th ed. p. 276. Philadelphia and London: Saunders.Google Scholar
Lusk, G. (1930). J. Nutr. 3, 519.Google Scholar
McCance, R. A. & Widdowson, E. M. (1959). J. Physiol., Lond. 147, 124.CrossRefGoogle Scholar
Miller, D. S., Mumford, P. & Stock, M. J. (1967). Am. J. clin. Nutr. 11, 1223.CrossRefGoogle Scholar
Mount, L. E. (1968). In The Climatic Physiology of the Pig, p. 103. London: Edward Arnold.Google Scholar
Newsholrne, E. A., Crabtree, B., Higgins, S. J., Thornton, S. D. & Start, C. (1972). Biochem. J. 128, 89.CrossRefGoogle Scholar
Paul, A. A. & Southgate, D. A. T. (1978). McCance & Widdowson's The Composition of Foods, 4th ed.London: HMSO.Google Scholar
Pittet, P., Chappuis, P., Acheson, K., de Techtermann, F. & Jéquier, E. (1976). Br. J. Nutr. 35. 281.CrossRefGoogle Scholar
Pittet, P., Gygax, P. H. & Jtquier, E. (1974). Br. J. Nutr. 31, 343.CrossRefGoogle Scholar
Rowell, J. G. & Walters, D. E. (1976). J. agric. Sci., Camb. 87, 423.CrossRefGoogle Scholar
Rubner, M. (1902). Die Gesetze des Energieverbrauchs bei der Ernahrung, p. 333. Leipzig: Deutiche.Google Scholar
Sirns, E. A. H. (1976). Clin. Endocr. Metab. 5, 377.Google Scholar
Strong, J. A., Shirling, D. & Passmore, R. (1967). Br. J. Nutr. 21, 909.CrossRefGoogle Scholar
Webster, A. J. F. & Hays, F. L. (1968). Can. J. Physiol. Pharmacol. 46, 577.CrossRefGoogle Scholar