Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T01:12:46.871Z Has data issue: false hasContentIssue false

The effect of dietary essential fatty acids on the concentration of serum and liver lipids in the rat

Published online by Cambridge University Press:  09 March 2007

A. J. Sinclair
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Australia
F. D. Collins
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. By feeding safflower-seed oil to rats deficient in the essential fatty acids it was found that major changes in the liver and serum triglycerides had occurred in 4 d although the fatty acid composition had not fully returned to normal.

2. Rats which had been on a saturated-fat diet for 18 weeks were given for 4 d, a diet supplemented with safflower-seed oil, methyl linolenate or ethyl arachidonate. Linoleic and linolenic acids failed to reduce the liver triglycerides but had some effect in raising the serum triglycerides to normal. Arachidonic acid reduced liver triglycerides but had no effect on serum lipids. There were marked changes in the fatty acid composition of the phospholipids but little change in the triglycerides.

3. There was good correlation between the concentrations of the phospholipids and the triglycerides in the serum. The concentration of serum phospholipids was positively correlated with the percentage of linoleic and arachidonic acids but negatively correlated with the percentage of palmitoleic, oleic and 5, 8, 11-eicosatrienoic acids.

4. In a further 4 d feeding experiment in which the lipoprotein fraction of very low density from the serum was measured, it was found that safflower-seed oil led to an increase but methyl arachidonate resulted in a decrease in the concentration of the lipids.

5. Extraction of the lipoprotein fraction of very low density from normal and deficient rats with n-heptane at – 18° indicated that phosphatidyl cholines containing stearic acid and either arachidonic or 5, 8, 1 1-eicosatrienoic acid were the most firmly bound.

6. It was concluded that linoleic acid and arachidonic acid had different and specific roles in lipid metabolism.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

REFERENCES

Alfin-Slater, R. B. & Aftergood, L. (1968). Physiol. Rev. 48, 758.CrossRefGoogle Scholar
Arvidson, G. A. E. (1968). Eur. J. Biochem. 5, 415.CrossRefGoogle Scholar
Bergström, S. & Carlson, L. A. (1965). Acta physiol. scand. 64, 479.CrossRefGoogle Scholar
Brenner, R. R. & Nervi, A. M. (1965). J. Lipid Res. 6, 363.CrossRefGoogle Scholar
Camejo, G. (1967). Biochemistry Easton, 6, 3228.CrossRefGoogle Scholar
Caster, W. O., Mohrhauer, H. & Holman, R. T. (1966). J. Nutr. 89, 217.CrossRefGoogle Scholar
Catal´, A. & Brenner, R. R. (1967). Lipids 2, 114.CrossRefGoogle Scholar
Collins, F. D. (1966). Biochem. J. 99, 117.CrossRefGoogle Scholar
Collins, F. D., Sinclair, A. J., Royle, J. P., Coats, D. A., Maynard, A. T. & Leonard, R. F. (1970). In Atherosclerosis. Proceedings of the Second International Symposium on Atherosclerosis [Jones, R. J., editor]. New York: Springer-Verlag.Google Scholar
Coots, R. H. (1964 a). J. Lipid Res. 5, 468.CrossRefGoogle Scholar
Coots, R. H. (1964 b). J. Lipid Res. 5, 473.CrossRefGoogle Scholar
Coots, R. H. (1965). J. Lipid Res. 6, 494.CrossRefGoogle Scholar
De Pury, G. G. & Collins, F. D. (1965). Biochim. biophys. Acta 106, 213.CrossRefGoogle Scholar
Efromyson, M. A. (1960). In Mathematical Methods for Digital Computers p. 191 [Ralston, A. and Wilf, A. S., editors]. New York and London: John Wiley & Sons.Google Scholar
Galanos, D. S. & Kapoulas, V. M. (1962). J. Lipid Res. 3, 134.CrossRefGoogle Scholar
Gustafson, A. (1965). J. Lipid Res. 6, 512.CrossRefGoogle Scholar
Havel, R. J., Eder, H. A. & Bragdon, J. H. (1955). J. clin. Invest. 34, 1345.CrossRefGoogle Scholar
Hofstetter, H. H., Sen, N. & Holman, R. T. (1965). J. Am. Oil Chem. Soc. 42, 537.CrossRefGoogle Scholar
Holman, R. T. (1964). Fedn Proc. Fedn Am. Socs exp. Biol. 23, 1062.Google Scholar
Holman, R. T. (1968). Prog. Chem. Fats 9, 275.CrossRefGoogle Scholar
Horning, E. C., Ahrens, E. H. Jr, Lipsky, S. R., Mattson, F. H., Mead, J. F., Turner, D. A. & Gold-water, W. H. (1964). J. Lipid Res. 5, 20.CrossRefGoogle Scholar
Itaya, K. & Ui, M. (1966). Clinica chim. Acta 14, 361.CrossRefGoogle Scholar
Leat, W. M. F. (1963). Biochem. J. 89, 44.CrossRefGoogle Scholar
Lyman, R. L., Ostwald, R., Bouchard, P. & Shannon, A. (1966). Biochem. J. 98, 438.CrossRefGoogle Scholar
Mead, J. F., Steinberg, G. & Howton, D. R. (1953). J. biol. Chem. 205, 683.CrossRefGoogle Scholar
Mohrhauer, H. & Holman, R. T. (1963). J. Lipid Res. 4, 151.CrossRefGoogle Scholar
Rahm, J. J. & Holman, R. T. (1964). J. Nutr. 84, 149.CrossRefGoogle Scholar
Sinclair, A. J. & Collins, F. D. (1968). Biochim. biophys. Acta 152, 498.CrossRefGoogle Scholar
Snedecor, G. W. (1946). Statistical Methods 4th ed.Iowa: Iowa State College Press.Google ScholarPubMed
Steinberg, D., Vaughan, M., Nestel, P. J. & Bergström, S. (1963). Biochem. Pharmac. 12, 764.CrossRefGoogle Scholar
Steinberg, G., Slaton, W. H. Jr, Howton, D. R. & Mead, J. F. (1956). J. biol. Chem. 220, 257.CrossRefGoogle Scholar
Trewhella, M. A. & Collins, F. D. (1969). Lipids 4, 304.CrossRefGoogle Scholar
Walker, B. L. (1967). J. Nutr. 92, 23.CrossRefGoogle Scholar
White, H. B. & Quackenbush, F. W. (1962). J. Am. Oil Chem. Soc. 39, 517.CrossRefGoogle Scholar