Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T07:33:35.621Z Has data issue: false hasContentIssue false

Effect of dietary tryptophan on muscle, liver and whole-body protein synthesis in weaned piglets: relationship to plasma insulin

Published online by Cambridge University Press:  09 March 2007

N. O. Cortamira
Affiliation:
INRA Station de Recherches Porcines, Saint-Gilles, 35590 L'Hermitage, France
B. Seve
Affiliation:
INRA Station de Recherches Porcines, Saint-Gilles, 35590 L'Hermitage, France
Y. Lebreton
Affiliation:
INRA Station de Recherches Porcines, Saint-Gilles, 35590 L'Hermitage, France
P. Ganier
Affiliation:
INRA Station de Recherches Porcines, Saint-Gilles, 35590 L'Hermitage, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two experiments were carried out with piglets, 3–5 kg live weight, to evaluate the effects of feeding a tryptophan (TRP)-deficient diet for 2 weeks on protein synthesis rates measured in vivo 2 h after a meal. In the first experiment on twenty piglets fed on 250 g protein/kg diets, TRP deficiency (0.77 g/16 g nitrogen) as compared with adequacy (1.17 g/16 g N) significantly decreased feed intake, growth performance and fractional protein synthesis rates (FSR), without variation of RNA in longissimus dorsi (LD) and with parallel increases in RNA in semitendinosus (ST) muscle and liver. In the second experiment thirty-two piglets were tube-fed deficient and adequate diets at the two feeding levels (LF) previously achieved. Both TRP and LF significantly increased growth performance and FSR, but not RNA, in LD and ST muscle, with a trend to a synergy between the two factors (TRP x LF interaction). In another muscle, trapezius (TR), the same interaction was only apparent in RNA content. Among the three muscles it was in LD that FSR was the most responsive to dietary TRP (significant muscle x TRP interaction). In the liver the TRP x LF interaction on FSR and not RNA was the major significant effect, indicating that higher TRP and higher LF were both required to get the maximum protein synthesis rate. At 30 min after a meal the same significant interaction effect was shown on plasma glucose, whilst the higher LF increased plasma insulin with both diets. After a further 30 min the appearance of a similar significant effect of the TRP x LF interaction on plasma insulin resulted from its abatement when the deficient diet had been fed at high LF. These results suggest that dietary TRP deficiency decreased muscle and liver protein synthesis rates in relation to a decrease in the post-prandial release of insulin following a decreased rate of nutrient absorption.

Type
Nitrogen Metabolism
Copyright
Copyright © The Nutrition Society 1991

References

REFERENCES

Attaix, D., Aurousseau, E., Manghebati, A. & Arnal, M. (1988). Contribution of liver, skin and skeletal muscle to whole-body protein synthesis in the young lamb. British Journal of Nutrition 60, 7784.CrossRefGoogle ScholarPubMed
Bachacou, J., Masson, J. P. & Millier, C. (1981). Manuel de la programmatheque statistique Amance 81. Nancy: Institut National de la Recherche Agronomique.Google Scholar
Berson, S. A. & Yalow, R. S. (1959). Quantitative aspects of the reaction between insulin and insulin-binding antibody. Journal of Clinical Investigations 38, 19962016.CrossRefGoogle ScholarPubMed
Clugston, G. A. & Garlick, P. J. (1982). The response of protein and energy metabolism to food intake in lean and obese man. Human Nutrition: Clinical Nutrition 36C, 5770.Google ScholarPubMed
Cochran, W. G. & Cox, G. M. (1957). Experimental Designs, 2nd ed. New York, London, Sydney: John Wiley & Sons, Inc..Google Scholar
Fuller, M. F., Cadenhead, A., Mollison, G. & Sève, B. (1987). Effects of the amount and quality of dietary protein on nitrogen metabolism and heat production in growing pigs. British Journal of Nutrition 58, 277285.CrossRefGoogle ScholarPubMed
Fuller, M. F., Weekes, T. E. C., Cadenhead, A. & Bruce, J. B. (1977). The protein-sparing effect of carbohydrate. The role of insulin. British Journal of Nutrition 38, 489496.CrossRefGoogle ScholarPubMed
Garlick, P. J., Fern, M. & Preedy, V. R. (1983). The effect of insulin and food intake on muscle protein synthesis in postabortive rats. Biochemical Journal 210, 669676.CrossRefGoogle Scholar
Garlick, P. J. & Lobley, G. E. (1987). Dietary intake and protein turnover. In Protein Metabolism and Nutrition, European Association for Animal Production Publication no. 35, pp. 1821 [Lehman, J., editor]. Rostock: Wilhelm-Pieck-Universität.Google Scholar
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of (3H)phenylalanine. Biochemical Journal 192, 719723.CrossRefGoogle Scholar
Grizard, J., Arnal, M. & Pion, R. (1980). Effect of experimental hyperinsulemia on insulin binding in liver plasma membrane. Reproduction Nutrition Développement 20, 311318.CrossRefGoogle Scholar
Grizard, J., Prugnaud, J. & Pion, R. (1977). Effect of insulin excess on body composition and free amino acid levels in blood. Annales de biologie animale biochimie et biophysique 17, 373387.CrossRefGoogle Scholar
Henry, Y. (1988). Signification de la protéine équilibrée pour le porc: intérêt et limites. (Significance of balanced protein in pigs: advantage and limitations.) INRA Productions Animales 1, 6574.CrossRefGoogle Scholar
Henry, Y. & Pastuszewska, B. (1976). Conséquences d'une déficience du régime en tryptophane chez le porc sur le niveau d'ingestion et les performances de croissance. (Effect of tryptophan deficiency in the pig diet on feed intake and growth performance.) Annales de Zootechnie 25, 143148.CrossRefGoogle Scholar
Herrera, M. T., Prieto, J. C. & Goberna, R. (1981). Effect of fasting and refeeding on insulin binding to liver plasma membranes and hepatocytes from normal rats. Hormone and Metabolic Research 13, 441445.CrossRefGoogle ScholarPubMed
INRA (1989). L'alimentation des animaux monogastriques, porc, lapin, volailles (The nutrition of simple-stomached animals: pig, rabbit, fowl.), 2nd ed. Paris: Institut National de la Recherche Agronomique.Google Scholar
Jefferson, L. S. (1980). Role of insulin in the regulation of protein synthesis. Diabetes 29, 487496.CrossRefGoogle ScholarPubMed
Kelly, F. J. & Goldspink, D. F. (1982). The differing response of four muscle types of dexamethasone treatment in the rat. Biochemical Journal 208, 147151.CrossRefGoogle ScholarPubMed
Laborde, D., Talmant, A. & Moin, G. (1985). Activités enzymatiques métaboliques et contractiles de 30 muscles du porc. Relations avec le pH ultime atteint apres la mort. (Enzyme metabolic and contractile activity in 30 pig muscles and their relationship to ultimate postmortem pH.) Reproduction Nutrition Développement 25, 619628.CrossRefGoogle Scholar
Leblanc, J., Cabanac, M. & Samson, P. (1984). Reduced postprandial heat production with gavage as compared with meal feeding in human subject. American Journal of Physiology 246, E95E101.Google Scholar
Lefaucheur, L., Le Peuch, C. & Vigneron, P. (1986). Characterization of insulin binding to slices of slow- and fast-twitch skeletal muscles in the rabbit. Hormone and Metabolic Research 18, 725729.CrossRefGoogle ScholarPubMed
Leibholz, J. (1981). Tryptophan requirements of pigs between 28 and 56 days of age. Australian Journal of Agricultural Research 32, 845850.CrossRefGoogle Scholar
Lin, F. D., Smith, T. K. & Bayley, H. S. (1988). A role for tryptophan in regulation of protein synthesis in porcine muscle. Journal of Nutrition 118, 445449.CrossRefGoogle ScholarPubMed
McNurlan, M. A., Tomkins, A. M. & Garlick, P. J. (1979). The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochemical Journal 178, 373379.CrossRefGoogle ScholarPubMed
Majumdar, A. P. N. (1979). Bilateral adrenalectomy: effect of tryptophan on protein synthesis and pepsin activity in the stomach of rats. Scandinavian Journal of Gastroenterology 14, 949954.Google ScholarPubMed
Millward, D. J., Bates, P. C., De Benoist, B., Brown, J. G., Cox, M., Halliday, D., Odedra, B. & Rennie, M. J. (1983). Protein turnover: the nature of the phenomenon and its physiological regulation. In Protein, Metabolism and Nutrition, vol. 1, European Association for Animal Production Publication no. 31. Les colloques de I'INRA, no. 16, pp. 6996 [Pion, R.Arnal, M. and Bonin, D., editors]. Paris: Institut National de la Recherche Agronomique.Google Scholar
Montgomery, G. M., Flux, D. S. & Greenway, R. M. (1980). Tryptophan deficiency in pigs: changes in food intake and plasma levels of glucose, amino acids, insulin and growth hormone. Hormone and Metabolic Research 12, 304309.CrossRefGoogle ScholarPubMed
Pérez, J. M. & Bourdon, D. (1982). Essai de replacement total du tourteau de soja dans le régime du porc en croissance: utilisation de pois supplémenté en tryptophane ou associé à un concentré de protéines du luzerne. (Total replacement of soybean meal in diets for growing pigs: use of peas supplemented with tryptophan or combined with an alfalfa protein concentrate.) Journées de la Recherche Porcine en France 14, 283296.Google Scholar
Preedy, V. R. & Garlick, P. J. (1985). The effect of glucagon administration on protein synthesis in skeletal muscles, heart and liver in vivo. Biochemical Journal 228, 575581.CrossRefGoogle ScholarPubMed
Reeds, P. J., Cadenhead, A., Fuller, M. F., Lobley, G. E. & McDonald, J. D. (1980). Protein turnover in growing pigs. Effects of age and food intake. British Journal of Nutrition 43, 445455.CrossRefGoogle ScholarPubMed
Reeds, P. J., Fuller, M. F., Cadenhead, A., Lobley, G. E. & McDonald, J. D. (1981). Effects of changes in the intakes of protein and non-protein energy on whole-body protein turnover in growing pigs. British Journal of Nutrition 45, 539546.CrossRefGoogle ScholarPubMed
Rothwell, N. J. & Stock, M. J. (1978). A paradox in the control of energy intake in the rat. Nature 273, 146147.CrossRefGoogle ScholarPubMed
Salter, D. N., Montgomery, A. I., Hudson, S., Quelch, D. B. & Elliot, R. J. (1990). Lysine requirements and whole-body protein turnover in growing pigs. British Journal of Nutrition 63, 503513.CrossRefGoogle ScholarPubMed
SAS Institute Inc. (1988). SAS/STAT User's Guide, Release 6.03 ed. Cary, NC: SAS Institute Inc.Google Scholar
Sève, B. (1983). Tryptophan requirement of pigs weaned at 10 days of age. Interaction with the level of feeding. In Protein Metabolism and Nutrition, vol. 2, European Association for Animal Production Publication no. 31. Les colloques de l'INRA, no. 16, pp. 419422 [Pion, R., Arnal, M. and Bonin, D., editors]. Paris: Institut National de la Recherche Agronomique.Google Scholar
Sève, B. (1985). Physiological basis of nutrient supply to the piglets during the adapting and post-adapting stage of weaning. World Review of Animal Production 21, 714.Google Scholar
Sève, B., Aumaitre, A., Jaubert, P. & Tord, P. (1978). Solubilisation des protéines de poisson, supplémentation en tryptophane et valeur alimentaire pour le porcelet. (Solubilization of fish protein, tryptophan supplementation and nutritive value for early weaned pigs.) Annales de Zootechnie 27, 423437.CrossRefGoogle Scholar
Sève, B., Reeds, P. J., Fuller, M. F., Cadenhead, A. & Hay, S. M. (1986). Protein synthesis and retention in some tissues of the young pig as influenced by dietary protein intake after early weaning. Possible connection to the energy metabolism. Reproduction Nutrition Développement 26, 849861.CrossRefGoogle Scholar
Sidransky, H., Murty, C. N. & Verney, E. (1984). Nutritional control of protein synthesis studies relating to tryptophan-induced stimulation of nucleocytoplasmic translocation of mRNA in rat liver. American Journal of Pathology 117, 298309.Google ScholarPubMed
Sidransky, H., Verney, E. & Sarma, D. S. R. (1971). Effect of tryptophan on polyribosomes and protein synthesis in liver. The American Journal of Clinical Nutrition 24, 779785.CrossRefGoogle ScholarPubMed
Tsiolakis, D. & Marks, V. (1984). The differential effect of intragastric and intravenous tryptophan on plasma glucose, insulin, glucagon, GLI and GIP in the fasted rat. Hormone and Metabolic Research 16, 226229.CrossRefGoogle ScholarPubMed
Vesely, J. & Cihak, A. (1970). Enhanced DNA-dependent RNA polymerase and RNA synthesis in rat liver nuclei after administration of L-tryptophan. Biochimica et Biophysica Acta 204, 614616.CrossRefGoogle ScholarPubMed
Wang, T. C. & Fuller, M. F. (1989). The optimum dietary amino acid pattern for growing pigs. British Journal of Nutrition 62, 7789.CrossRefGoogle ScholarPubMed