Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T10:53:23.078Z Has data issue: false hasContentIssue false

Effect of experimental zinc deficiency and repletion on sodium, potassium, copper and iron concentrations in guinea-pigs

Published online by Cambridge University Press:  09 March 2007

R.P. Gupta
Affiliation:
Department of Veterinary Pathology
P.C. Verma
Affiliation:
Department of Veterinary Pathology
J. R. Sadana
Affiliation:
Department of Veterinary Pathology
V. K. Gupta
Affiliation:
Department of Soil Science, Haryana Agricultural University, Hisar-125004, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Zinc, sodium, potassium, copper and iron concentrations were analysed in serum and tissues of guinea-pigs fed on a diet containing 1.25 mg Zn/kg diet over a period of 60 d. The response of the Zn-deficient (ZnD) animals to Zn supplementation (100 mg Zn/kg diet) was also studied for 15 d. Serum studies in the ZnD group revealed significant decreases in the concentrations of Zn and Na from 24 d, and increases in the concentrations of Fe and K from 36 and 48 d onwards respectively; an increase in Cu was seen on day 60 only. Zn deficiency caused significant reductions in Na, K and Zn and increases in Cu and Fe contents of liver and kidney. In testis, significant decreases were noted only in Zn, K and Fe contents. Zn supplementation of the previously ZnD group resulted in marked improvements in serum and tissue mineral levels. However, hepatic Cu and Fe and renal K did not appear to respond appreciably.

Type
Lipids
Copyright
Copyright © The Nutrition Society 1989

References

REFERENCES

Bremner, I. & Marshall, R. B. (1974a). Hepatic copper- and zinc-binding proteins in ruminants. 1. Distribution of Cu and Zn among soluble proteins of livers of varying Cu and Zn content. British Journal of Nutrition 32, 283291.CrossRefGoogle Scholar
Bremner, I. & Marshall, R. B. (1974b). Hepatic copper- and zinc-binding proteins in ruminants. 2. Relationship between Cu and Zn concentrations and the occurrence of a metallothionein-like fraction. British Journal of Nutrition 32, 293300.CrossRefGoogle Scholar
Burch, R. E., Williams, R. V., Hahn, H. K. J., Jetton, M. M. & Sullivan, J. F. (1975). Serum and tissue enzyme activity and trace element content in response to zinc deficiency in pig. Clinical Chemistry 21, 568577.CrossRefGoogle ScholarPubMed
D'Silva, J. L. (1937). Action of adrenaline on the serum potassium. Journal of Physiology 90, 303310.CrossRefGoogle ScholarPubMed
Duncan, L. E. Jr, Solomon, D. H., Nichols, M. P. & Rosenberg, E. (1951). The effect of the chronic administration of adrenal medullary hormones to man on adreno-cortical functions and the renal excretion of electrolytes. Journal of Clinical Investigation 30, 908914.CrossRefGoogle Scholar
Evans, G. W., Cornatzer, N. F. & Cornatzer, W. E. (1970). Mechanism for hormone-induced alterations in serum ceruloplasmin. American Journal of Physiology 218, 613615.CrossRefGoogle ScholarPubMed
Forbes, G. B. (1962). Sodium. In Mineral Metabolism, vol. 2, part B, pp. 272 [Comar, C. L. and Bronner, F. editors]. New York: Academic Press.Google Scholar
Gandhi, S. (1982). Effect of different levels of zinc on the availability of iron and copper. MSc Thesis, Haryana Agricultural University, Hisar, India.Google Scholar
Gordon, P. R. & O'Dell, B. L. (1983). Zinc deficiency and impaired platelet aggregation in guinea-pigs. Journal of Nutrition 113, 239245.CrossRefGoogle ScholarPubMed
Gubler, C. L., Lahey, M. E., Cartwright, G. E. & Wintrobe, M. M. (1952). Studies on copper metabolism. X- Factors influencing the plasma copper level of the albino rat. American Journal of Physiology 171, 652658.CrossRefGoogle ScholarPubMed
Gupta, R. P., Verma, P. C. & Gupta, R. K. P. (1985). Experimental zinc deficiency in guinea-pigs: clinical signs and some haematological studies. British Journal of Nutrition 54, 421428.CrossRefGoogle ScholarPubMed
Gupta, R. P., Verma, P. C., Sadana, J. R. & Gupta, R. K. P. (1988). Studies on the pathology of experimental zinc deficiency in guinea-pigs. Journal of Comparative Pathology 98, 405413.CrossRefGoogle ScholarPubMed
Horwitz, W. (1965). Official Methods of Analysis of the Association of Official Analytical Chemists, p. 193. Washington, DC: Ben Franklin Press.Google Scholar
Jubb, K. V. F., Kennedy, P. C. & Palmer, N. (1985). Pathology of Domestic Animals, vol. 3, pp. 282294. New York: Academic Press.Google Scholar
Kaufman, C. E. & Papper, S. (1983). Hyperkalemia. In Potassium: its Biological Significance, pp. 7796 [Whang, R. editor]. Boca Raton, Florida: CRC Press.Google Scholar
Kirchgessner, M., Schwarz, F. J., Grassman, E. & Steinhart, H. (1979). Interactions of copper with other trace elements. In Copper in the Environment, part 2, Health Effects, pp. 442448 [Nariagu, J. O. editor]. New York: John Wiley & Sons.Google Scholar
McBean, L. D., Smith, J. C. Jr & Halsted, J. A. (1972). Zinc deficiency in guinea-pigs. Proceedings of the Society for Experimental Medicine 140, 12071209.CrossRefGoogle ScholarPubMed
Morley, J. E., Gordon, J. & Hershman, J. M. (1980). Zinc deficiency, chronic starvation and hypo-thalemic–pituitary–thyroid function. American Journal of Clinical Nutrition 33, 17671770.CrossRefGoogle ScholarPubMed
Murthy, L., Klevay, L. M. & Petering, H. G. (1974). Interrelationship of zinc and copper nutriture in the rats. Journal of Nutrition 104, 14581465.CrossRefGoogle Scholar
Nariagu, J. O. (1980). Zinc in the Environment, part 2, Health Effects. New York: John Wiley & Sons.Google Scholar
National Research Council (1979). Zinc, pp. 183189. Baltimore: University Park Press.Google Scholar
O'Nell-Cutting, M. A., Bomford, A. & Munro, H. N. (1981). Effect of excess dietary zinc on tissue storage of iron in rats. Journal of Nutrition 111, 19691979.CrossRefGoogle Scholar
Reeves, P. G. & O'Dell, B. L. (1986). Effects of dietary zinc deprivation on the activity of angiotensin-converting enzyme in serum of rats and guinea-pigs. Journal of Nutrition 116, 128134.CrossRefGoogle ScholarPubMed
Reinstein, N. H., Lonnerdal, B., Keen, C. L. & Hurley, L. S. (1984). Zinc-copper interactions in the pregnant rat: field outcome and maternal and fetal zinc, copper and iron. Journal of Nutrition 114, 12661279.CrossRefGoogle Scholar
Roth, H. P. & Kirchgessner, M. (1977). Contents of zinc, copper, iron, manganese and calcium in bones and livers of rats depleted and refed with zinc. Zentrablatt für Veterinärmedizin 24A, 177188.CrossRefGoogle Scholar
Schwarz, F. J. & Kirchgessner, M. (1974). Intestinal absorption of copper, zinc and iron after dietary depletion. In Trace Element Metabolism in Animals, vol. 2, pp. 519522 [Hoekstra, W. G.Suttle, J. W.Ganther, H. E. and Mertz, W. editors]. Baltimore: University Park Press.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods. Ames, Iowa: Iowa State University Press.Google Scholar
Speckhard, D. C., Wu, F. Y. H. & Wu, C. W. (1977). Role of the intrinsic metal in RNA polymerase from Escherichia coli. In vivo substitution of tightly bound zinc with cobalt. Biochemistry 16, 52285233.CrossRefGoogle ScholarPubMed
Todd, E. P. & Vick, R. L. (1971). Kalemotropic effect of epinephrine. American Journal of Physiology 220, 19641969.CrossRefGoogle ScholarPubMed
Wallwork, J. C., Bothen, J. H. & Sandstead, H. H. (1982). Influence of dietary zinc on rat brain catecholamines. Journal of Nutrition 112, 514519.CrossRefGoogle ScholarPubMed
Wallwork, J. C., Milne, D. B., Sims, R. L. & Sandstead, H. H. (1983). Severe zinc deficiency: effects on the distribution of nine elements (potassium, sodium, magnesium, calcium, iron, zinc, copper and manganese) in regions of the rat brain. Journal of Nutrition 113, 18951905.CrossRefGoogle ScholarPubMed
Widdowson, M. E. & Dickerson, J. W. T. (1964). Chemical composition of the body. In Mineral Metabolism, vol. 2, part A, pp. 146171 [Comar, C. L. and Bronners, F. editors]. New York: Academic Press.Google Scholar
Wootton, I. D. P. (1974). Microanalysis in Medical Biochemistry. London: J. A. Churchill Livingstone.Google Scholar