Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T06:38:05.419Z Has data issue: false hasContentIssue false

Effect of kidney bean (Phaseolus vulgaris) toxin on tissue weight and composition and some metabolic functions of rats

Published online by Cambridge University Press:  09 March 2007

Fiona Greer
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Alan C. Brewer
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Arpad Pusztal
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Inclusion of raw kidney bean (Phasealus vulgaris) proteins in the diet for rats was shown to affect the weight of some internal organs. Of these, in addition to the well-known hypertrophy of the pancreas attributable to dietary trypsin inhibitors, the observed atrophy of the thymus and the doubling in weight of the small intestine are related to the protein or lectin content of the bean diet, or both.

2. Changes in tissue composition of the small intestine were also recorded. Its protein content increased by about 40–50% and carbohydrate content doubled suggesting the occurrence of increased mucinous glycoprotein secretion. Increased DNA content (by about 30–40 %) however also indicated mucosal hyperplasia.

3. Changes were also observed in mineral content, urea concentration and some enzyme activities in sera and urine, possibly as a result of disturbances in systemic metabolism or hormone levels, or both.

4. The results gave further support to previous suggestions that the oral toxicity of kidney-bean lectins involves local reactions in the small intestine in combination with their effects on the systemic immune system and general metabolism.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Burton, K. (1956). Biochemical Journal 62, 315322.CrossRefGoogle Scholar
Chandra, R. K. & Newberne, P. M. (1977). In Nutrition, immunity and infection, pp. 67126 [Chandra, R. K. and Newberne, P. M. editors]. New york: Plenum press.CrossRefGoogle Scholar
Coates, M. E., O'donoghue, P. N., Payne, R. R. & Ward, R. J. (1969). Laboratory animals handbooks no. 2, dietary standards for laboratory rats and mice. London: London laboratory animals ltd.Google Scholar
Curtis-Prior, P. B., Hanley, T. & Temple, N. J. (1975). Analyst, London 100, 105110.CrossRefGoogle Scholar
Davidson, J., Mathieson, J. & Boyne, A. W. (1970). Analyst, London 95, 181193.CrossRefGoogle Scholar
Dowling, R. H. & Booth, C. C. (1967). Clinical Science 32, 139149.Google Scholar
Evans, R. J., Pusztai, A., Watt, W. B. & Bauer, D. H. (1973). Biochimica et Biophysica Acta 303, 175184.CrossRefGoogle Scholar
Freed, D. L. J. (1982). In Lectins: biology, biochemistry, clinical biochemistry, vol. 2, pp. 3343 [Bog-hansen, T. C. editor]. Berlin & new york: de gruyter.Google Scholar
Freed, D. L. J. & Buckley, C. H. (1978). Lancet i, 586587.Google Scholar
Gitelman, H. J. (1967). Analytical Biochemistry 18, 521531.CrossRefGoogle Scholar
Gitelman, H. J., Hurt, C. & Lutwak, L. (1966). Analytical Biochemistry 14, 106120.CrossRefGoogle Scholar
Grant, G., More, L. J., McKenzie, N. H. & Pusztai, A. (1982). Journal of the Science of Food and Agriculture 33, 13241326.CrossRefGoogle Scholar
Griebel, C. (1950). Zeitschrift für Lebensmittel-Undersuchung und-Forschung 90, 191197.CrossRefGoogle Scholar
Ikegwuono, F. I. & Bassir, O. (1976). Toxicology and Applied Pharmacology 37, 211216.CrossRefGoogle Scholar
Jaffe, W. J. (1980). Toxic constituents of plant foodstuffs, pp. 73102 [Liener, I. E. editor]. New york: Academic press.Google Scholar
Jayne-Williams, D. J. & Burgess, C. D. (1974). Journal of Applied Bacteriology 37, 149169.CrossRefGoogle Scholar
Johansen, P. G., Marshall, R. D. & Neuberger, A. (1960). Biochemical Journal 77, 239245.CrossRefGoogle Scholar
Johns, C. O. & Finks, A. J. (1920). Journal of Biological Chemistry 41, 379389.CrossRefGoogle Scholar
Kakade, M. L., Keahey, K. K., Whitehair, C. K. & Evans, R. J. (1965). Proceedings of the Society for Experimental Biology and Medicine 119, 934937.CrossRefGoogle Scholar
King, T. P., Begbie, R. & Cadenhead, A. (1983). Journal of the Science of Food and Agriculture 34, 14041412.CrossRefGoogle Scholar
King, T. P. & Pusztai, A. (1982). Biology of the cell 45, 217. (Abstract Commun. 1st European Congress on Cell Biology (Pans ) no. 503.)Google Scholar
King, T. P., Pusztai, A. & Clarke, E. M. W. (1980). Histochemical Journal 12, 201208.CrossRefGoogle Scholar
King, T. P., Pusztai, A. & Clarke, E. M. W. (1982). Journal of Comparative Pathology 92, 357373.CrossRefGoogle Scholar
Klein, R. M. & McKenzie, J. C. (1983). Journal of Pediatric Gastroenterology and Nutrition 2, 204228.Google Scholar
Lowry, O.H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265275.CrossRefGoogle Scholar
McIlvaine, T. C. (1921). Journal of Biological Chemistry 49, 183186.CrossRefGoogle Scholar
Marsh, W. H., Fingerhut, B. & Miller, H. (1965). Clinical Chemistry 11, 624627.CrossRefGoogle Scholar
Moore, S. & Stein, M. (1954). Journal of Biological Chemistry 176, 907913.CrossRefGoogle Scholar
Myer, R. O., Froseth, J. A. & Coon, C. N. (1982). Journal of Animal Science 55, 10871098.CrossRefGoogle Scholar
Noah, N. D., Bender, A. E., Reaidi, G. B. & Gilbert, R. J. (1980). British Medical Journal 281, 236237.Google Scholar
Palmer, R., McIntosh, A. & Pusztai, A. (1973). Journal of the Science of Food and Agriculture 24, 937944.CrossRefGoogle Scholar
Pusztai, A. (1967). Nutrition Abstracts and Reviews 37, 19.Google Scholar
Pusztai, A., Clarke, E. M. W., Grant, G. & King, T. P. (1981). Journal of the Science of Food and Agriculture 32, 10371046.CrossRefGoogle Scholar
Pusztai, A., Clarke, E. M. W. & King, T. P. (1979). Proceedings of the Nutrition Society 38, 115121.CrossRefGoogle Scholar
Pusztai, A., King, T. P. & Clarke, E. M. W. (1982). Toxicon 20, 195197.CrossRefGoogle Scholar
Pusztai, A. & Palmer, R. (1977). Journal of the Science of Food and Agriculture 28, 620623.CrossRefGoogle Scholar
Pusztai, A. & Watt, W. B. (1974). Biochimica et Biophysica Acta 365, 5771.CrossRefGoogle Scholar
Roy, J. H. B., Stobo, I. J. F., Shotton, S. M., Ganderton, P. & Gillies, C. M. (1977). British Journal of Nutrition 38, 167187.CrossRefGoogle Scholar
Schacterle, G. R. & Pollack, R. L. (1973). Analytical Biochemistry 17, 654655.CrossRefGoogle Scholar
Schiller, K. (1960). Zeitschrift für Tierphysiologie Tiernährung und Futtermittelkunde 15, 305308.CrossRefGoogle Scholar
Schmidt, G. & Thannhauser, S. J. (1945). Journal of Biological Chemistry 161, 8389.CrossRefGoogle Scholar
Schneider, W. C., Hogeboom, G. H. & Ross, H. E. (1950). Journal of the National Cancer Institute 10, 977982.Google Scholar
Sgarbieri, V.C., Clarke, E. M. W. & Pusztai, A. (1982). Journal ofthe Science of Food and Agriculture 33, 881891.CrossRefGoogle Scholar
Sigma (1977). Sigma technical bulletin no. 505. Poole, dorset: Sigma chemical co.Google Scholar
Sigma (1982). Sigma technical bulletin no. 104. Poole, dorset: Sigma chemical co.Google Scholar
Technicon instruments co. ltd (1971). Technicon methodology sheet no. 11–07. Basingstoke: Technicon instruments co. ltd.Google Scholar
Tedeschi, G. G., Petrelli, F. & Anuci, D. (1965). Italian Journal of Biochemistry 14, 237251.Google Scholar
Trinder, P. (1969). Annals of Clinical Biochemistry 6, 2427.CrossRefGoogle Scholar
Tutton, P. T. M. (1973). Virchows Archives Abteilung B. Zellpathologie 13, 227232.CrossRefGoogle Scholar
Williams, P. E. V., Pusztai, A., Macdeannid, A. & Innes, G. M. (1984). Animal Feed Science and Technology 12, 110,CrossRefGoogle Scholar
Young, D.S. (1966). Journal of Clinical Pathology 19, 397399.CrossRefGoogle Scholar