Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T07:13:40.169Z Has data issue: false hasContentIssue false

Effect of monensin on the fermentation of basal rations in the Rumen Simulation Technique (Rusitec)

Published online by Cambridge University Press:  09 March 2007

R. J. Wallace
Affiliation:
The Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
J. W. Czerkawski
Affiliation:
The Hannah Research Institute, Ayr, Scotland KA6 5HL
Grace Breckenridge
Affiliation:
The Hannah Research Institute, Ayr, Scotland KA6 5HL
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A long-term experiment was made with the Rumen Simulation Technique (Rusitec), in which the fermentation of a mixed ration of hay (1Og/d) and bruised barley (5g/d) was compared with the fermentation of the same diet in the presence of 2, 10 and 50 mg monensin/d.

2. Monensin depressed the production of acetic and butyric acids, markedly increased the production of propionic acid and virtually eliminated the production of isovaleric acid. The production of methane was decreased in the presence of monensin, but this decrease could be accounted for entirely by the changes in the production of volatile fatty acids and redistribution of metabolic hydrogen.

3. The digestibility of dry matter (DM) in the rations declined in the presence of monensin. Determinations of the rates of digestion showed that the digestion of the readily-fermented food in the initial stages was not affected by monensin, but that at 24 h digestion had been inhibited by monensin. The inhibition was due entirely to its effect on the digestion of the fibrous components. Digestion of non-fibrous material was not affected.

4. The efficiency of microbial growth, expressed as g dry weight/mol ATP formed (YATP) and in terms of dm digested, tended to be increased by monensin. This however occurred only at high, non-practical doses.

5. Urease (EC 3.5.1.5) was induced by the addition of urea to the fermentation, but monensin had no effect on urease activity. Although monensin increased the activity of protease in washed suspensions, more food protein apparently escaped degradation. This may have been due to decreased deaminative activity.

6. Monensin altered the mircroscopic appearance of the fermentation fluid, and changed the activity of some enzymes in sonicated extracts, including alkaline phosphatase (EC 3.1.3.1), acetate kinase (EC 2.7.2.1) and succinate dehydrogenase (EC 1.3.9.1). These results are discussed in terms of known sensitivities of rumen microbes to monensin and their contribution to the fermentation as a whole.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

REFERENCES

Allen, J. D. & Harrison, D. G. (1979). Proc. Nutr. Soc. 38, 32A.Google Scholar
Baile, C. A., McLaughlin, C. L., Potter, E. L. & Chalupa, W. (1979). J. Anim. Sci. 48, 1501.CrossRefGoogle Scholar
Baldwin, R. L. & Palmquist, D. L. (1965). Appl. Microbiol. 13, 194.CrossRefGoogle Scholar
Blaxter, K. L. & Wainman, F. W. (1964). J. agric. Sci., Camb. 63, 113.CrossRefGoogle Scholar
Chalupa, W. (1980). In Digestive Physiology and Metabolism in Ruminants, p. 325 [Ruckebusch, Y. and Thivend, P. editors]. Lancaster, England: MTP Press Ltd.CrossRefGoogle Scholar
Chalupa, W., Corbett, W. & Bre:hour, J. R. (1980). J. Anim. Sci. 51, 170.CrossRefGoogle Scholar
Chen, M. & Wolin, M. J. (1979). Appl. environ. Microbiol. 38, 72.CrossRefGoogle Scholar
Cheng, K.-J., Bailey, C. B., Wallace, R. J., Czerkawski, J. W., & Costerton, J. W. (1979). Report of 15th Conference on Rumen FunctionChicagoNov. 28–29, 1979.Google Scholar
Cheng, K.-J. & Costerton, J. W. (1977 a). J. Bacteriol. 129, 1506.CrossRefGoogle Scholar
Cheng, K.-J. & Costerton, J. W. (1977 b). Appl. environ. Microbiol. 34, 586.CrossRefGoogle Scholar
Cook, A. R. (1976). J. gen Microbiol. 92, 32.CrossRefGoogle Scholar
Coombe, J. B., Dinius, D. A., Goering, H. K. & Oltjen, R. R. (1979). J. Anim. Sci. 48, 1223.CrossRefGoogle Scholar
Czerkawski, J. W. (1978). J. Dairy Sci. 61, 1261.CrossRefGoogle Scholar
Czerkawski, J. W. (1979). Compartmentation in the rumen. The Hannah Research Institute Report pp. 69–85. Ayr, Scotland, KA6 5HL.Google Scholar
Czerkawski, J. W. & Breckenridge, G. (1977). Br. J. Nutr. 38, 371.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1979 a). Br. J. Nutr. 42, 217.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1979 b). Br. J. Nutr. 42, 229.CrossRefGoogle Scholar
Czerkawski, J. W., Christie, W. W., Breckenridge, G. & Hunter, M. L. (1975). Br. J. Nutr. 34, 25.CrossRefGoogle Scholar
Dartt, R. M., Boling, J. A. & Bradley, N. W. (1978). J. Anim. Sci. 46, 345.CrossRefGoogle Scholar
Demeyer, D. I. & Van Nevel, C. J. (1979). Br. J. Nutr. 42, 515.CrossRefGoogle Scholar
Dinius, D. A., Simpson, M. E. & Marsh, P. B. (1976). J. Anim. Sci. 42, 229.CrossRefGoogle Scholar
Dinsdale, D., Cheng, K.-J., Wallace, R. J. & Goodlad, R. A. (1980). Appl. environ. Microbiol. 39, 1059.CrossRefGoogle Scholar
Fitzgerald, P. R. & Mansfield, M. E. (1978). Am. J. vet. Res. 39, 7.Google Scholar
Hammond, A. C., Carlson, J. R. & Breeze, R. G. (1978). Science 201, 153.CrossRefGoogle Scholar
Haney, M. E. & Hoehn, M. M. (1967). Antimicrob. Agents Chemother. p. 349.Google Scholar
Hanson, T. L. & Klopfenstein, T. (1979). J. Anim. Sci. 48, 474.CrossRefGoogle Scholar
Horton, G. M. J. (1979). Ann. Rech. vét. 10, 335.Google Scholar
Horton, G. M. J. & Stockdale, P. H. G. (1979). Am. J. vet. Res. 40, 966.Google Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York and London: Academic Press.Google Scholar
Jarvis, B. D. W. (1968). Appl. Microbiol. 16, 714.CrossRefGoogle Scholar
Jouany, J. P. & Senaud, J. (1978). Ann. Zootech. 27, 61.CrossRefGoogle Scholar
Joyner, A. E., Brown, L. J., Fogg, T. J. & Rossi, R. T. (1979). J. Anim. Sci. 48, 1065.CrossRefGoogle Scholar
Lemenager, R. P., Owens, F. N., Shockey, B. J., Lusby, K. S. & Totusek, R. (1978). J. Anim. Sci. 47, 255.CrossRefGoogle Scholar
Leng, R. A., Steel, J. W. & Luick, J. R. (1967). Biochem. J. 103, 785.CrossRefGoogle Scholar
McDougall, E. I. (1948). Biochem. J. 43, 99.CrossRefGoogle Scholar
Nockels, C. F., Jackson, D. W. & Berry, B. W. (1978). J. Anim. Sci. 47, 788.CrossRefGoogle Scholar
Oltjen, R. R., Dinius, D. A. & Goering, H. K. (1977). J. Anim. Sci. 45, 1442.CrossRefGoogle Scholar
Ørskov, E. R., Grubb, D. A., Smith, J. S., Webster, A. J. F. & Corrigall, W. (1979). Br. J. Nutr. 41, 541.CrossRefGoogle Scholar
Poos, M. I., Hanson, T. L. & Klopfenstein, T. J. (1979). J. Anim. Sci. 48, 1516.CrossRefGoogle Scholar
Raun, A. P., Cooley, C. O., Potter, E. L., Rathmacher, R. P. & Richardson, L. F. (1976). J. Anim. Sci. 43, 670.CrossRefGoogle Scholar
Richardson, L. F., Raun, A. P., Potter, E. L., Cooley, C. O. & Rathmacher, R. P. (1976). J. Anim. Sci. 43, 657.CrossRefGoogle Scholar
Rose, I. A., Grunberg-Manago, M., Korey, S. R. & Ochoa, S. (1954). J. biol. Chem. 211, 737.CrossRefGoogle Scholar
Slyter, L. L. (1979). Appl. environ. Microbiol. 37, 283.CrossRefGoogle Scholar
Stanier, G. & Davies, A. (1981). Br. J. Nutr. 45, 567.CrossRefGoogle Scholar
Thornton, J. H., Owens, F. N., Lemenager, R. P. & Totusek, R. (1976). J. Anim. Sci. 43, 336.Google Scholar
Utley, P. R., Newton, G. L., Wilson, D. M. & McCormick, W. C. (1977). J. Anim. Sci. 45, 154.CrossRefGoogle Scholar
Van Nevel, C. J. & Demeyer, D. I. (1977). Appl. environ. Microbiol. 34, 251.CrossRefGoogle Scholar
Van Nevel, C. J. & Demeyer, D. I. (1979). Ann. Rech. vét. 10, 338.Google Scholar
Wallace, R. J. (1979). J. appl. Bacteriol. 47, 443.CrossRefGoogle Scholar
Wallace, R. J., Cheng, K.-J. & Czerkawski, J. W. (1980). Appl. environ. Microbiol. 40, 672.CrossRefGoogle Scholar