Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T04:27:34.767Z Has data issue: false hasContentIssue false

Effect of riboflavine deficiency on nucleic acid metabolism of liver in the rat

Published online by Cambridge University Press:  09 March 2007

Ajay K. Chatterjee
Affiliation:
Department of Physiology, University College of Science, 92 Acharya Prafulla Chandra Road, Calcutta-9, India
Amitabha D. Roy
Affiliation:
Department of Physiology, University College of Science, 92 Acharya Prafulla Chandra Road, Calcutta-9, India
B. B. Ghosh
Affiliation:
Department of Physiology, University College of Science, 92 Acharya Prafulla Chandra Road, Calcutta-9, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of riboflavine deficiency on liver ribonuclease activity, RNA and DNA content, and 32P incorporation into RNA and DNA has been studied in rats maintained on a 16% protein diet, a protein-free diet and on a protein-free diet subsequently replaced with a 40% protein diet.

2. Rats maintained on a riboflavine-deficient diet for 45 days showed decreased incorporation of 32P into liver RNA but no effect on the RNA content of liver. The concentration of DNA in liver and 33P incorporation into it remained unaffected. After a deficiency period of 70 days, both the RNA and DNA contents of liver were found to be decreased. When the riboflavine-deficient or control rats were given the protein diet for 30 days and then a proteinfree diet for 15 days, the RNA content of their livers decreased, while the liver DNA content was increased. Repletion with a 40% protein diet restored the RNA and DNA content in both control and riboflavine-deficient rats.

3. Liver ribonuclease activity was decreased after a deficiency period of 45 days, whereas it was increased after a deficiency period of 70 days.

4. A correlation between liver RNA level and liver ribonuclease activity in riboflavine deficiency is suggested.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1969

References

Allison, J. B., Wannemacher, R. W. Jr, Parmer, L. P. & Gomez-Brenes, R. (1961). J. Nutr. 74, 176.CrossRefGoogle Scholar
Allison, J. B., Wannemacher, R. W. Jr, Banks, W. L., Wunner, W. H. & Gomez-Brenes, R. A. (1962). J. Nutr. 78, 333.CrossRefGoogle Scholar
Bhagwat, R. V. & Sohonie, K. (1954). Curr. Sci. 23, 90.Google Scholar
Bhagwat, R. V. & Sohonie, K. (1955). Ann. Biochem. exp. Med. 15, 161.Google Scholar
Borgström, S. & Hammersten, G. (1944). Acta physiol. scand. 7, 80.CrossRefGoogle Scholar
Brown, A. H. (1946). Archs Biochem. 11, 269.Google Scholar
Campbell, R. M. & Kosterlitz, H. W. (1947). J. Physiol., Lond. 106, 12P.Google Scholar
Campbell, R. M. & Kosterlitz, H. W. (1948). J. biol. Chem. 175, 989.CrossRefGoogle Scholar
Campbell, R. M. & Kosterlitz, H. W. (1952). Science, N. Y. 115, 84.CrossRefGoogle Scholar
Cooper, J. A. D. (1953). J. biol. Chem. 200, 155.CrossRefGoogle Scholar
Czaczkes, J. W. & Guggenheim, K. (1946). J. biol. Chem. 162, 267.CrossRefGoogle Scholar
Davidson, J. N., Frazer, S. C. & Hutchinson, W. C. (1951). Biochem. J. 49, 311.CrossRefGoogle Scholar
Dische, Z. & Schwarz, K. (1937). Mikrochim. Acta 2, 13.CrossRefGoogle Scholar
Doisy, R. J. & Westerfeld, W. W. (1952). Proc. Soc. exp. Biol. Med. 80, 203.CrossRefGoogle Scholar
Donaldson, K. O. & Keresztesy, J. C. (1959). J. biol. Chem. 234, 3235.CrossRefGoogle Scholar
Ely, J. O. & Ross, M. H. (1951). Science, N.Y. 114, 70.CrossRefGoogle Scholar
Fisher, R. A. (1936). Statistical Methods for Research Workers. Edinburgh: Oliver & Boyd.Google Scholar
Fukuda, M. & Sibatani, A. (1953). Expl Cell Res. 4, 236.CrossRefGoogle Scholar
Greenberg, D. M. (1945). Fedn Proc. Fedn Am. Socs exp. Biol. 13, 745.Google Scholar
Guggenheim, K. & Diamant, E. J. (1959). Br. J. Nutr. 13, 61.CrossRefGoogle Scholar
Hawk, P. B. & Oser, B. L. (1931). Science, N. Y. 74, 369.CrossRefGoogle Scholar
Jamdar, S. C., Boral, M. C. & Bhattacharya, R. (1965). Naturwissenschften 52, 38.CrossRefGoogle Scholar
Josefsson, L. & Lagerstedt, S. (1962). Meth. biochem. Analyses 9, 39.CrossRefGoogle Scholar
Kosterlitz, H. W. (1947). J. Physiol., Lond. 106, 194.CrossRefGoogle Scholar
Lecomte, C. & DeSmul, A. (1952). C. r. Acad. Sci. Belles-lett. Arts Clermont-Ferrand 234, 1400.Google Scholar
McIndoe, W. M. & Davidson, J. N. (1952). Br. J. Cancer 6, 200.CrossRefGoogle Scholar
McQuarrie, E. B. & Venosa, A. T. (1945). Science, N. Y. 101, 493.CrossRefGoogle Scholar
Mayfield, H. L. & Hedrick, M. T. (1949). J. Nutr. 37, 475.CrossRefGoogle Scholar
Mookerjea, S. & Hawkins, W. W. (1960). Br. J. Nutr. 14, 231.CrossRefGoogle Scholar
Mookerjea, S. & Jamdar, S. C. (1962). Can. J. Biochem. Physiol. 40, 1065.CrossRefGoogle Scholar
Munro, H. N. (1966). Meth. biochem. Analysis 14, 113.CrossRefGoogle Scholar
Munro, H. N. & Allison, J. B. (1964). Mammalian Protein Metabolism. Vol. 1, p. 400. New York and London: Academic Press Inc.Google Scholar
Munro, H. N. & Clark, C. M. (1960). Proc. Nutr. Soc. 19, 55.CrossRefGoogle Scholar
Munro, H. N., Naismith, D. J. & Wikramanayake, T. W. (1953). Biochem. J. 54, 198.CrossRefGoogle Scholar
Muntwyler, E., Seifter, S. & Harkness, D. M. (1950). J. biol. Chem. 184, 181.CrossRefGoogle Scholar
O'Brien, J. S. (1962). Cancer Res. 22, 267.Google Scholar
Sarett, H. P., Klein, J. R. & Perlzweig, W. A. (1942). J. Nutr. 24, 295.CrossRefGoogle Scholar
Sarett, H. P. & Perlzweig, W. A. (1943). J. Nutr. 25, 173.CrossRefGoogle Scholar
Schneider, W. C. (1946). J. biol. Chem. 164, 747.CrossRefGoogle Scholar
Seifter, S., Harkness, D. M., Rubin, L. & Muntwyler, E. (1948). J. biol. Chem. 176, 1371.CrossRefGoogle Scholar
Sure, B. (1941). J. Nutr. 22, 295.CrossRefGoogle Scholar
Sure, B. (1944). J. Nutr. 27, 447.CrossRefGoogle Scholar
Sure, B. & Dichek, M. (1941). J. Nutr. 21, 453.CrossRefGoogle Scholar
Sure, B. & Ford, Z. W. Jr (1942). J. biol. Chem. 146, 241.CrossRefGoogle Scholar
Thomson, R. Y., Heagy, F. C., Hutchison, W. C. & Davidson, J. N. (1953). Biochem. J. 53, 460.CrossRefGoogle Scholar
Umbreit, W. W., Burris, R. H. & Stauffer, J. F. (1957). Manometric Techniques, p. 273. Minneapolis, Minn.: Burgess Publishing Co.Google Scholar
Unna, K., Singher, H. O., Kensler, C. J., Taylor, M. C. Jr & Rhoads, C. P. (1944). Proc. Soc. exp. Biol. Med. 55, 254.CrossRefGoogle Scholar
Villela, G. G. (1952). Rev. Brasil. Biol. 12, 321.Google Scholar
Williams, J. N. Jr (1961). J. Nutr. 73, 199.CrossRefGoogle Scholar
Zigman, S. & Allison, J. B. (1959). Cancer Res. 19, 1105.Google Scholar