Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T20:44:57.006Z Has data issue: false hasContentIssue false

Effects of dietary fat on the amounts and proportions of the individual lipids in turkey muscle

Published online by Cambridge University Press:  09 March 2007

T. S. Neudoerffer
Affiliation:
Agricultural Research Council Food Research Institute, Low Temperature Research Station, Cambridge
C. H. Lea
Affiliation:
Agricultural Research Council Food Research Institute, Low Temperature Research Station, Cambridge
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Lipid extracted from breast and leg muscle of 10-week-old turkeys was fractionated by preparative thin-layer chromatography and five individual ‘neutral’ and eight individual phospholipid fractions, representing 95% by weight of the extractable lipid, were recovered from the plates for analysis.

The ‘neutral’ lipids from breast and leg muscle consisted mainly of triglyceride (202–497 and 1644–2333 mg/100 g), together with cholesterol (74 and 103 mg/100 g), free fatty acid (27 and 123 mg/100 g), diglyceride (17 and 66 mg/100 g) and cholesterol ester (9 and 12 mg/100 g).

The phospholipids contained phosphatidylcholine (367 and 500 mg/100 g), phosphatidylethanolamine (157 and 279 mg/100 g), phosphatidylinositol (60 and 109 mg/100 g), sphingomyelin (43 and 62 mg/100 g), phosphatidylserine (31 and 61 mg/100 g), ‘cardiolipin’ (23 and 35 mg/100 g), lysophosphatidylcholine (9 and 11 mg/100 g) and ‘origin fraction’ (6 and 7 mg/100 g), accounting together (700 mg and 1070 mg/100 g for breast and leg muscle respectively) for 98% of the lipid phosphorus extracted.

Partial replacement of carbohydrate in the cereal-based diet by beef fat (2·5%) or anchovy oil (2·5 or 5·0%) had no effect on the amount of any of the lipid fractions, except for triglyceride, which varied considerably and was lowest in tissue from groups receiving 2·5% anchovy oil.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1968

References

Acosta, S. O., Marion, W. W. & Forsythe, R. H. (1966). Poult. Sci. 45, 1685.CrossRefGoogle Scholar
Bartlett, G. R. (1959). J. biol. Chem. 234, 466.CrossRefGoogle Scholar
Bligh, E. G. & Dyer, W. J. (1959). Can. J. Biochem. 37, 911.Google Scholar
Bloor, W. R. (1943). Biochemistry of the Fatty Acids. New York: Reinhold Publishing Corp.Google Scholar
Boettcher, C. J. F., van Gent, C. M. & Pries, C. (1961). Analytica chim. Acta 24, 203.CrossRefGoogle Scholar
Boltralik, J. J. & Noll, H. (1960). Analyt. Biochem. 1, 269.CrossRefGoogle Scholar
Brower, H. E., Jeffery, J. E. & Folsom, M. W. (1966). Analyt. Chem. 38, 362.CrossRefGoogle Scholar
Dawson, R. M. C. (1965). Biochem. J. 97, 134.CrossRefGoogle Scholar
Duncombe, W. G. (1963). Biochem. J. 88, 7.CrossRefGoogle Scholar
Flint, D. R., Lee, T.-C. & Huggins, C. G. (1965). J. Am. Oil Chem. Soc. 42, 1001.CrossRefGoogle Scholar
Folch, J., Lees, M. & Stanley, G. H. S. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Galanos, D. S., Aïvazis, G. A. M. & Kapoulas, V. M. (1964). J. Lipid Res. 5, 242.CrossRefGoogle Scholar
Gilpin, G. L., Dawson, E. H., Toepher, E. W. & Warren, H. W. (1952). Tech. Bull. U. S. Dep. Agric. no. 1054.Google Scholar
Gray, G. M. & Macfarlane, M. G. (1961). Biochem. J. 81, 480.CrossRefGoogle Scholar
Hanson, S. W. F. & Olley, J. (1963). Biochem. J. 89, 102P.Google Scholar
Hill, E. G. (1966). J. Nutr. 89, 143.CrossRefGoogle Scholar
Holla, K. S., Horrocks, L. A. & Cornwell, D. G. (1964). J. Lipid Res. 5, 263.CrossRefGoogle Scholar
Horrocks, L. A. & Cornwell, D. G. (1962). J. Lipid Res. 3, 165.CrossRefGoogle Scholar
Jellum, E. & Björnstad, P. (1964). J. Lipid Res. 5, 314.CrossRefGoogle Scholar
Jover, A. (1963). J. Lipid Res. 4, 228.CrossRefGoogle Scholar
Lambert, M. & Neish, A. C. (1950). Can. J. Res. 28B, 83.CrossRefGoogle Scholar
Langer, S. H., Connell, S. & Wender, I. (1958). J. org. Chem. 23, 50.CrossRefGoogle Scholar
Lea, C. H. (1957). J. Sci. Fd Agric. 8, 1.CrossRefGoogle Scholar
Lea, C. H., Parr, L. J., L'Estrange, J. L. & Carpenter, K. J. (1966). Br. J. Nutr. 20, 123.CrossRefGoogle Scholar
Le Baron, F. N., Folch, J. & Rothleder, E. E. (1957). Fedn Proc. Fedn Am. Socs exp. Biol. 16, 209.Google Scholar
Lee, Y. C. & Ballou, C. E. (1965). J. Chromat. 18, 147.CrossRefGoogle Scholar
Lewis, L. A., Brown, H. B. & Page, I. H. (1966). Int. Congr. Nutr. VII.Hamburg, p. 217.Google Scholar
Marion, J. E. (1965). J. Nutr. 85, 38.CrossRefGoogle Scholar
Marion, J. E. & Woodroof, J. G. (1965). J. Fd Sci. 30, 38.CrossRefGoogle Scholar
Mattsson, S. & Swartling, P. (1963). Rep. Milk Dairy Res. Alnarp no. 68.Google Scholar
Mickelberry, W. C., Rogler, J. C. & Stadelmann, W. J. (1966). Poult. Sci. 42, 313.CrossRefGoogle Scholar
Neudoerffer, T. S. & Lea, C. H. (1966). Br. J. Nutr. 20, 581.CrossRefGoogle Scholar
Neudoerffer, T. S. & Lea, C. H. (1967). Br. J. Nutr. 21, 691.CrossRefGoogle Scholar
Parker, F. & Peterson, N. F. (1965). J. Lipid Res. 6, 455.CrossRefGoogle Scholar
Peng, C. Y. & Dugan, L. R. Jr (1965). J. Am. Oil Chem. Soc. 42, 533.CrossRefGoogle Scholar
Rhodes, D. N. & Lea, C. H. (1961). J. Sci. Fd Agric. 12, 211.CrossRefGoogle Scholar
Sgoutas, D. (1966). Can. J. Biochem. 44, 763.CrossRefGoogle Scholar
Sheltawy, A. & Dawson, R. M. C. (1966). Biochem. J. 100, 12.CrossRefGoogle Scholar
Skipski, V. P., Peterson, R. F. & Barclay, M. (1962). J. Lipid Res. 3, 467.CrossRefGoogle Scholar
Snyder, F. & Stephens, N. (1959). Biochem. biophys. Acta 34, 244.Google Scholar
Spinella, C. J. & Mager, M. (1966). J. Lipid Res. 7, 167.CrossRefGoogle Scholar
Sweeley, C. C., Bentley, R., Makita, M. & Wells, W. W. (1963). J. Am. chem. Soc. 85, 2497.CrossRefGoogle Scholar
Winter, E. (1963). Z. Lebensmitt. Untersuch. 123, 205.CrossRefGoogle Scholar