Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T06:33:36.176Z Has data issue: false hasContentIssue false

The effects of different dietary contents of protein on amino acid and glucose production and on the contribution of amino acids to gluconeogenesis in sheep

Published online by Cambridge University Press:  19 January 2009

P. E. B. Reilly
Affiliation:
Department of Biochemistry, The University, PO Box 147, Liverpool, L693BX
E. J. H. Ford
Affiliation:
Department of Veterinary Clinical Studies, University of Liverpool Veterinary Field Station, Leahurst, Neston, Cheshire
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Free amino acid entry rates, rates of portal uptake of amino acids and rates of glucose synthesis from amino acids have been measured during the continuous intravenous infusion of [U-14C]-labelled mixed amino acids in six sheep receiving diets that supplied different amounts of protein.

2. In four of these sheep and in one other, total rates of glucose production have been measured using continuous intravenous infusions of [U-14C]-labelled glucose.

3. A signiiicant correlation was found between total amino acid entry rate ( Y mg/min.kg) and daily protein intake ( X g/kg): Y = 2·14+ 1·38X (r = 0·878, 0·02 > P > 0·01).

4. A significant correlation was found between the rate of absorption of amino acids into the portal system ( Y mg/min.kg) and the daily protein intake ( X g/kg): Y = 0·58 + 0·58X (r = 0·884, 0·02 > P > 0·01).

5. A highly significant correlation was found between total glucose production rates ( Y mglmin. kg) and daily protein intake ( X g/kg): and daily protein intake ( X g/kg): Y = 2.14+ 1.38X (r = 0·878, 0·02 > P > 0·01). Y = 0·375f0·702X (r = 0·866, 0·005 > P > 0·001).

6. The mean proportional contribution to total amino acid entry made by portal absorption was 33·5 f 1·8 yo (six animals).

7. A significant correlation was found between the rate of glucose production from amino acids (Y mg/min.kg) and the rate of entry of amino acids ( X mg/min.kg): Y = 0-189X-0·414 ( r = 0·84, 0·01 > P > 0·005).

8. The best approximation of the proportion of glucose derived from amino acids was 28·16 f 5·1 % (six animals).

9. The specific radioactivities of amino acids in liver, kidney and muscle did not approach those found in plasma during infusions of [U-14C]-labelled mixed amino acids of up to 6·75 h.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1971

References

REFERENCES

Annison, E. F., Brown, R. E., Leng, R. A., Lindsay, D. B. & West, C. E. (1967). Biochem. J. 104, 135.CrossRefGoogle Scholar
Annison, E. F., Lindsay, D. B. & White, R. R. (1963). Biochem. J. 88, 243.CrossRefGoogle Scholar
Annison, E. F. & White, R. R. (1961). Biochem. J. 80, 162.CrossRefGoogle Scholar
Awapara, J. & Marvin, H. N. (1949). J. biol. Chem. 178, 691.CrossRefGoogle Scholar
Bergman, E. N. (1963). Am. J. Physiol. 204, 147.CrossRefGoogle Scholar
Bergman, E. N., Roe, W. E. & Kon, K. (1966). Am. J. Physiol. 211, 793.CrossRefGoogle Scholar
Bergman, E. N., Starr, D. J. & Reulein, S. S. (1968). Am. J. Physiol. 215, 874.CrossRefGoogle Scholar
Coulson, R. A. & Hernandez, T. (1968). Am. J. Physiol. 215, 741.CrossRefGoogle Scholar
Ford, E. J. H. (1963). Biochem. J. 88, 427.CrossRefGoogle Scholar
Ford, E. J. H. (1965). J. agric. Sci., Camb. 65, 41.CrossRefGoogle Scholar
Ford, E. J. H. & Reilly, P. E. B. (1969). Res. vet. Sci. 10, 409.CrossRefGoogle Scholar
Ford, E. J. H. & Reilly, P. E. B. (1970). Res. vet. Sci. 11, 575.CrossRefGoogle Scholar
Friedberg, F. & Greenberg, D. M. (1947). J. biol. Chem. 168, 411.CrossRefGoogle Scholar
Garlick, P. J. (1969). Nature, Lond. 223, 61.CrossRefGoogle Scholar
Hall, T. C. & Cocking, E. C. (1965). Biochem. J. 96, 626.CrossRefGoogle Scholar
Harris, C. K., Tigane, E. & Hanes, C. S. (1961). Can. J. Biochem. Physiol. 39, 439.CrossRefGoogle Scholar
Huggett, A. St. G. & Nixon, D. A. (1957). Lancet ii, 368.CrossRefGoogle Scholar
Jones, G. B. (1965). Analyt. Biochem. 12, 249.CrossRefGoogle Scholar
Krebs, H. A. (1964). Proc. R. Soc. B 159, 545.Google Scholar
Leat, W. M. F. & Ford, E. J. H. (1966). Biochem. J. 101, 317.CrossRefGoogle Scholar
Leibholz, J. (1965). Aust. J. agric. Res. 16, 973.CrossRefGoogle Scholar
Leng, R. A., Steele, J. W. & Luick, J. R. (1967). Biochem. J. 103, 785.CrossRefGoogle Scholar
Lindsay, D. B. (1959). Vet. Revs Annot. 5, 103.Google Scholar
Lindsay, D. B. & Ford, E. J. H. (1964). Biochem. J. 90, 24.CrossRefGoogle Scholar
Loftfield, R. B. & Harris, A. (1956). J. biol. Chem. 219, 151.CrossRefGoogle Scholar
Rosen, H. (1957). Archs Biochem. Biophys. 67, 10.CrossRefGoogle Scholar
Schurr, P. E., Thompson, H. T., Henderson, L. M. & Elvehjem, C. A. (1950). J. biol. Chem. 182, 29.CrossRefGoogle Scholar
Schurr, P. E., Thompson, H. T., Henderson, L. M., Williams, J. N. Jr. & Elvehjem, C. A. (1950). J. biol. Chem. 182, 39.CrossRefGoogle Scholar
Slater, J. S. (1965). Res. vet. Sci. 6, 92.CrossRefGoogle Scholar
Solomon, J. D., Johnson, C. A., Sheffner, A. L. & Bergeim, O. (1951). J. biol. Chem. 189, 629.CrossRefGoogle Scholar
Steele, R., Wall, J. S., de Bodo, R. C. & Altszuler, N. (1956). Am. J. Physiol. 187, 15.CrossRefGoogle Scholar
Tallan, H. H., Moore, S. & Stein, W. H. (1954). J. biol. Chem. 211, 927.CrossRefGoogle Scholar
Waterlow, J. C. & Stephen, J. M. L. (1966). Br. J. Nutr. 20, 461.CrossRefGoogle Scholar
Waterlow, J. C. & Stephen, J. M. L. (1968). Clin. Sci. 35, 287.Google Scholar