Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T06:59:59.006Z Has data issue: false hasContentIssue false

Effects of guar gum and cellulose on glucose absorption, hormonal release and hepatic metabolism in the pig

Published online by Cambridge University Press:  09 March 2007

C. Simões Nunes
Affiliation:
Département NASA, INRA-CRJ, 78350 Jouy-en-Josas, France
K. Malmlöf
Affiliation:
Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Six Large White pigs (mean body-weight 59 (se 1.7) kg) were surgically fitted with permanent catheters in the portal vein, the brachiocephalic artery and the right hepatic vein, as well as with electromagnetic flow probes around the portal vein and the hepatic artery, and allowed to recover. The non-anaesthetized animals were given a basal non-fibre diet (diet A) alone or together with 60 g guar gum/kg (diet B) or 150 g purified cellulose/kg (diet C) by substitution for mica. The diets were given for weekly periods and according to a replicated 3x3 Latin square design. On the last day of each such adaptation period, test meals of 800 g were given before blood sampling. Sampling was continued for 8 h. Guar gum strongly reduced glucose apparent absorption without changing the absorption and the hepatic uptake profiles. Production rates of insulin, gastric inhibitory polypeptide and insulin-like growth factor-1 (IGF-1) were lowest after guar gum ingestion. However, the reductions in peripheral blood insulin levels caused by guar gum were not associated with a change in hepatic insulin extraction. IGF-1 appeared to be strongly secreted by the gut, whereas the liver had a net uptake of the peptide. Ingestion of guar gum increased the hepatic extraction coefficient of gut-produced IGF-1. Guar gum ingestion appeared also to decrease glucagon secretion.

Cellulose at the level consumed had very few effects on the variables considered.

It is suggested that the modulation of intestinal mechanisms by guar gum was sufficient to mediate the metabolic effects described

Type
Metabolic Effects of carbohydrates
Copyright
Copyright © The Nutrition Society 1992

References

Barrett, E. J., Gusberg, R., Ferrannini, E., Tepler, J., Felig, P., Jacob, P., Smith, D. & De Fronzo, R. A. (1986). Amino acid and glucose metabolism in the postabsorptive state and following amino acid ingestion in the dog. Metabolism 35, 709717.CrossRefGoogle ScholarPubMed
Blackburn, N. A., Redfern, J. S., Jaris, H., Holgate, A. M., Hanning, I., Scarpello, J. H. B., Johnson, I. T. & Read, N. W. (1984). The mechanism of action of guar gum is improving glucose tolerance in man. Clinical Science 66, 329336.CrossRefGoogle ScholarPubMed
Borel, P., Lairon, D., Senft, M., Garzino, P. & Lafont, H. (1989). Lack of effect of purified cellulose and hemicellulose on the digestion and the intestinal absorption of dietary lipids in the rat. Annals of Nutrition and Metabolism 33, 237245.CrossRefGoogle ScholarPubMed
Buonomo, F. C. & Baile, C. A. (1991). Influence of nutritional deprivation on insulin-like factor I, somatotropin, and metabolic hormones in swine. Journal of Animal Science 69, 755760.CrossRefGoogle ScholarPubMed
Cherbut, C., Albina, E., Champ, M., Doublier, J. L. & Lecannu, G. (1990). Action of guar gums on the viscosity of digestive contents and on the gastrointestinal motor function in pigs. Digestion 46, 205213.CrossRefGoogle ScholarPubMed
Coxam, V., Bauchart, D., Durand, D., Davicco, M. J., Opneer, F. & Barlet, J. P. (1989). Nutrient effects on the hepatic production of somatomedin-C (IGF-1) in the milk-fed calf. British Journal of Nutrition 62, 425437.CrossRefGoogle ScholarPubMed
Daughaday, W. H. & Rotwein, P. (1989). Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocrine Reviews 10, 6991.CrossRefGoogle ScholarPubMed
Gulliford, M. C., Bicknell, E. J. & Scarpello, J. H. B. (1988). Effect of guar on amino acid absorption and the blood glucose, insulin, C-peptide and glucagon responses to jejunal amino acid and glucose perfusion in man. European Journal of Clinical Nutrition 42, 871876.Google ScholarPubMed
Hagander, B., Scherstén, B., Asp, N. G., Sartor, G., Agardh, C. D., Schrezenmeir, J., Kasper, H., Ahrén, B. & Lundquist, I. (1984). Effect of dietary fibre on blood glucose, plasma immunoreactive insulin, C-peptide and GIP responses in non-insulin-dependent (type 2) diabetics and controls. Acta Medica Scandinavica 215, 205213.CrossRefGoogle ScholarPubMed
Hamberg, O., Rumessen, J. J. & Gudman-Hoyer, E. (1989). Inhibition of starch absorption by dietary fiber. Scandinavian Journal of Gastroenterology 24, 103109.CrossRefGoogle Scholar
Heaton, K. W. (1983). Dietary fibre in perspective. Human Nutrition Clinical Nutrition 37C, 151170.Google Scholar
Hill, J. B. & Kessler, G. (1961). An automated determination of glucose utilising a glucose oxidase–peroxidase system. Journal of Clinical Medicine 57, 970980.Google ScholarPubMed
Holt, S., Heading, R. C., Carter, D. C., Prescott, L. F. & Tothill, P. (1979). Effect of gel fibre on gastric emptying and absorption of glucose and paracetamol. Lancet i, 636639.CrossRefGoogle Scholar
Isaksson, G., Lundquist, I. & Ishe, I. (1982). Effect of dietary fibre on pancreatic enzyme activity in vitro. The importance of viscosity, pH, ionic strength, adsorption and time of incubation. Gastroenterology 82, 918924.CrossRefGoogle Scholar
Ishida, T., Chou, J., Lewis, R. M., Hartley, C. J., Entman, M. & Field, J. B. (1983). The effect of ingestion of meat on hepatic extraction of insulin and glucagon and glucose output in conscious dogs. Metabolism: Clinical and Experimental 32, 558567.CrossRefGoogle ScholarPubMed
Isley, W. L., Underwood, L. E. & Clemmons, D. R. (1983). Dietary components that regulate somatomedin-C concentrations in humans. Journal of Clinical Investigation 71, 175182.CrossRefGoogle ScholarPubMed
Jenkins, D. J. A., Wolever, T. M. S., Jenkins, A. L., Thorne, M. J., Lee, R., Kalmusky, J., Reichert, R. & Wrong, G. S. (1983). The glycaemic index of foods tested in diabetic patients: a new basis for carbohydrate exchange favouring the use of legumes. Diabetologia 24, 257264.CrossRefGoogle ScholarPubMed
Jenkins, D. J. A., Wolever, T. M. S., Leeds, A. R., Gassull, M. A., Haisman, P., Dilawari, J., Goff, D. V., Metz, G. L. & Alberti, K. G. M. M. (1978). Dietary fibres, fibre analogues and glucose tolerance: importance of viscosity. British Medical Journal i, 13921394.CrossRefGoogle Scholar
Johnson, I. T. (1990). Fibre sources for the food industry. Proceedings of the Nutrition Society 49, 3138.CrossRefGoogle ScholarPubMed
Johnson, I. T. & Gee, J. M. (1986). Gastrointestinal adaptation in response to soluble non-available polysaccharides in the rat. British Journal of Nutrition 55, 497505.CrossRefGoogle ScholarPubMed
Laplace, J. P. & Lebas, F. (1981). Plantix (fiber) deficiency in animal physiopathology. World Review of Nutrition and Dietetics 37, 84176.CrossRefGoogle ScholarPubMed
Malmlöf, K., Simões Nunes, C. & Askbrant, S. (1989). Effects of guar gum on plasma urea, insulin and glucose in the growing pig. British Journal of Nutrition 61, 6773.CrossRefGoogle ScholarPubMed
Malmlöf, K., Simões Nunes, C. & Örberg, J. (1988). Effects of a high dietary fibre level on postprandial porto-arterial differences in the plasma concentrations of immunoreactive insulin, glucose and free amino acids in the growing pig. Swedish Journal of Agricultural Research 18, 6775.Google Scholar
Minaire, Y., Forichon, J. & Studievic, C. (1967). Dosage fluorimétrique enzymatique par l'autoanalyzer (Fluorimetric enzymic determinations with an autoanalyser). In Automation in Analytical Chemistry, Technicon Symposium, vol. 2. pp. 145150. New York: Mediad Inc.Google Scholar
Minaire, Y., Foucherand, F. & Studievic, C. (1965). Adaptation du dosage de l'acide lactique par voie enzymatique à l'autoanalyzer (Adaptation of lactic acid enzymic determination to the autoanalyser). In IV Symposium Internationale Technicon, Paris. Domont: Technicon.Google Scholar
Morgan, L. M., Goulder, T. J., Tsiolakis, D., Marks, V. & Alberti, K. G. M. M. (1979). The effect of unabsorbable carbohydrate on gut hormones: modification of postprandial GIP secretion by guar. Diabetologia 17, 8589.CrossRefGoogle ScholarPubMed
Prewett, T. E., D'Ercole, A. J., Switzer, B. R. & Van Wyk, J. J. (1982). The relationship of serum immunoreactive Somatomedin-C to dietary protein and energy in the growing rat. Journal of Nutrition 112, 144150.CrossRefGoogle Scholar
Rainbird, A. L. & Low, A. G. (1986). Effect of guar gum on gastric emptying in growing pigs. British Journal of Nutrition 55, 8798.CrossRefGoogle ScholarPubMed
Rémésy, C. & Demigné, C. (1989). Specific effects of fermentable carbohydrates on blood urea flux and ammonia absorption in the rat cecum. Journal of Nutrition 119, 560565.CrossRefGoogle ScholarPubMed
Rérat, A., Chayvialle, J. A., Kandé, J., Vaissade, P., Vaugelade, P. & Bourrier, T. (1985). Metabolic and hormonal effects of test meals with various protein contents in pigs. Canadian Journal of Physiology and Pharmacology 63, 15471559.CrossRefGoogle ScholarPubMed
Simões Nunes, C., Galibois, I., Rérat, A., Savoie, L. & Vaugelade, P. (1991). Hepatic and portal-drained viscera balances of amino acids, insulin, glucagon and gastrin in the pig after ingestion of casein or rapeseed proteins. Reproduction, Nutrition, Développement 31, 217231.CrossRefGoogle ScholarPubMed
Simões Nunes, C. & Malmlöf, K. (1992). Interorgan movements of amino acids in the pig: effects of dietary fibre. Amino Acids 2, 7786.CrossRefGoogle Scholar
Simões Nunes, C., Rérat, A., Galibois, I., Vaugelade, P. & Vaissade, P. (1989). Hepatic and gut balances of glucose, amino-nitrogen, ammonia and urea in the pig after ingestion of casein or rapeseed proteins. Nutrition Reports International 40, 901907.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods. Ames, Iowa: Iowa State University Press.Google Scholar
Torsdottir, I., Alpstein, M., Andersson, H. & Einarsson, S. (1989). Dietary guar gum effects on postprandial blood glucose, insulin and hydroxyproline in humans. Journal of Nutrition 119, 19251931.CrossRefGoogle ScholarPubMed
Turner, P. R., Tuomileheto, J., Happoner, P., La Ville, A. E., Shaikh, M. & Lewis, B. (1990). Metabolic studies on the hypolipidaemic effect of guar gum. Atherosclerosis 81, 145150.CrossRefGoogle ScholarPubMed