Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T04:23:49.205Z Has data issue: false hasContentIssue false

Effects of lα-hydroxylated metabolites of cholecalciferol on intestinal radiocalcium absorption in goats

Published online by Cambridge University Press:  09 March 2007

Knut Hove
Affiliation:
Department of Animal Nutrition, Agricultural University of Norway, 1432 Ås-NLH, Norway
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Intestinal absorption of 47Ca was measured by a double-isotope technique in goats treated with 1, 5 or 25 μg of 1,25-dihydroxycholecalciferol (1,25(OH)2D3). The effects of giving 1,25(OH)2D3 by intravenous (iv) infusion for 30–36 h were compared at each dose level with the effects obtained by oral administration of 1,25(OH)2D3 either in ethanol or protected against rumen degradation in fatty acid pellets.

2. Dose-dependent increments in absorption followed the treatments, with a doubling of absorption at the 1 μg dose and three- to fivefold increases with the 5 and 25 μg doses. 47Ca absorption was equally stimulated 2 and 6 d after treatment but had returned to pretreatment levels 12–14 d after treatment.

3. Intravenous and protected oral administration of 1,25(OH)2D3 stimulated 47Ca absorption to the same extent, in spite of two- to fivefold higher plasma concentrations of 1,25(OH)2D3 after iv treatment. Somewhat lower increments in 47Ca absorption were seen using ethanol as the vehicle for oral administration.

4. The naturally occurring metabolites 1,24(R),25-trihydroxycholecalciferol and 1,25(S),26-trihydroxy-cholecalciferol had only one-tenth to one-fifteenth the potency of 1,25(OH)2D3 in stimulating 47Ca absorption, while synthetic lα-hydroxycholecalciferol appeared to be twice as effective as 1,25(OH)2D3 when tested at a high (10μg) dose.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

Abdel-Hafeez, H. M., Manas-Almendros, M., Ross, R., Care, A. D. & Marshall, D. H. (1982). British Journal of Nutrition 47, 6977.CrossRefGoogle Scholar
Aksnes, L. (1980). Clinica Chimica Acta 104, 133146.CrossRefGoogle Scholar
Bonjour, J. P., Rizzoli, R., Hugi, K., Haldimann, B. & Fleisch, H. (1978). Metabolic Bone Disease and Related Research 1, 2328.CrossRefGoogle Scholar
Braithwaite, G. D. (1978). British Journal of Nutrition 40, 387392.CrossRefGoogle Scholar
Braithwaite, G. D. (1980). British Journal of Nutrition 44, 183191.CrossRefGoogle Scholar
Clemens, T. L., Hendy, G. N., Papapoulos, S. E., Fraher, L. J., Care, A. D. & O'Riordan, J. L. H. (1979). Clinical Endocrinology 11, 225234.CrossRefGoogle Scholar
Holick, M. F., Kleiner-Bossaller, M. F., Schnoes, H. K., Kasten, P. M., Boyle, I. T. & DeLuca, H. F. (1973). Journal of Biological Chemistry 248, 66916696.CrossRefGoogle Scholar
Holick, M. F., Schnoes, H. K. & DeLuca, H. F. (1971). Proceedings of the National Academy of Sciences USA 68, 803804.CrossRefGoogle Scholar
Horst, R. L., Eisman, J. A., Jorgensen, N. A. & De Luca, H. F. (1977). Science 196, 662663.CrossRefGoogle Scholar
Horst, R. L., Hove, K., Littledike, E. T., Reinhardt, T. L., Uskokovic, M. R. & Partridge, J. J. (1983). Journal of Dairy Science 66, 14551460.CrossRefGoogle Scholar
Hove, K. (1984). British Journal of Nutrition 51, 145156.CrossRefGoogle Scholar
Hove, K., Horst, R. L. & Littledike, E. T. (1983). Journal of Dairy Science 66, 5966.CrossRefGoogle Scholar
Hove, K. & Kristiansen, T. (1982). Journal of Dairy Science 65, 19341940.CrossRefGoogle Scholar
Kleiner-Bossaler, A. & DeLuca, H. F. (1974). Biochemica et Biophysica Acta 338, 489495.CrossRefGoogle Scholar
Kream, B. A., Jose, M. J. L. & DeLuca, H. F. (1977). Archives of Biochemistry and Biophysics 179, 462468.CrossRefGoogle Scholar
Lee, D. B. N., Walling, M. M., Levine, B. S., Gafter, U., Silis, V., Hodsman, A. & Coburn, J. W. (1981). American Journal of Physiology 240, G90G96.Google Scholar
Mawer, E. B., Backhouse, J., Davies, M., Hill, L. F. & Taylor, C. M. (1976). Lancet i, 1203.CrossRefGoogle Scholar
Nicolaysen, R., Eeg-Larsen, N. & Malm, O. J. (1953). Physiological Reviews 33, 424444.CrossRefGoogle Scholar
Norman, A. W. (1979). Vitamin D. The Calcium Homeostatic Steroid Hormone. New York: Academic Press.Google Scholar
Norman, A. W., Myrtic, J. F., Midgett, R. J., Nowickz, H. G., Williams, W. & Popjak, G. (1971). Science 173, 5154.CrossRefGoogle Scholar
Omdahl, J. L., Holick, M., Suda, T., Tanaka, Y. & DeLuca, H. F. (1971). Biochemistry 10, 29352940.Google Scholar
Reinhardt, T. A., Napoli, J. L., Pramanik, B., Littledike, E. T., Beitz, D. C., Partridge, J. J., Uskokovic, M. R. & Horst, R. L. (1981). Biochemistry 20, 62306235.CrossRefGoogle Scholar
Rizzoli, R., Fleisch, H. & Bonjour, J. P. (1977). American Journal of Physiology 233, E 160164.Google Scholar
Sommerfeldt, J. L., Horst, R. L., Napoli, J. L., Beitz, D. C. & Littledike, E. T. (1980). Journal of Dairy Science 63 (Suppl. 1), 8889.Google Scholar