Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T04:45:22.681Z Has data issue: false hasContentIssue false

Effects of oestrogen administration on vitamin B6 and tryptophan metabolism in the rat

Published online by Cambridge University Press:  09 March 2007

David A. Bender
Affiliation:
Courtauld Institute of Biochemistry, The Middlesex Hospital Medical School, London W1P 7PN
Clemente E. Tagoe
Affiliation:
Courtauld Institute of Biochemistry, The Middlesex Hospital Medical School, London W1P 7PN
Justin A. Vale
Affiliation:
Courtauld Institute of Biochemistry, The Middlesex Hospital Medical School, London W1P 7PN
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1.In order to assess the effects of oestrogens on the metabolism of tryptophan and vitamin B6, ovariectomized rats have been maintained on diets providing known amounts of tryptophan, nicotinamide and vitamin B6. They received oestrone sulphate. 210μg/kg body-wt per d, either incorporated in the diet for 8 weeks, or by daily intraperitoneal injection for periods of 1–3 d.

2. Oestrone sulphate administration caused a slight reduction in the concentration of pyridoxal phosphate in plasma. It had no effect on the concentration of pyridoxal phosphate in liver or kidney, the urinary excretion of 4-pyridoxic acid, the activation of erythrocyte aspartate aminotransferase (L-aspartate:2-oxo-glutarate aminotransferase, EC 2.6.1.1)by incubation with added pyridoxal phosphate, or the activity of pyridoxal oxidase (aldehyde:oxygen oxido-reductase, EC 1.2.3.1) in the liver.

3. Oestrone sulphate administration caused an increase in the urinary excretion of kynurenine and a reduction in the activity of liver kynureninase (L-kynurenine hydrolase, EC 3.7.1.3), It had no effect on the urinary excretion of N1-methyl nicotinamide or the concentrations of nicotinamide nucleotides in blood, liver or kidney.

4. There was a considerable excess of the apoenzyme of kynureninase in the liver. Incubation of liver homogenates with added pyridoxal phosphate led to a 4- to 5-fold increasein activity.

5. We conclude that there is no evidence of any significant effect of oestrogens on vitamin B6. It is suggested that abnormalities of tryptophan metabolism in women receiving oestrogens. which have been widely attributedto drug-induced vitamin B6 depletion, can be accounted for by inhibition of kynureninase by oestrogen metabolites.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

Adams, E. (1979). Meths. Enzym. 62, 407.CrossRefGoogle Scholar
Aly, H. E., Donald, E. A. & Simpson, M. H. W. (1971). Am. J. clin. Nutr. 24, 297.CrossRefGoogle Scholar
Bender, D. A. (1980). Biochem. Pharmac. 29, 2099.Google Scholar
Bender, D. A., Coulson, W. F., Papadaki, L. & Pugh, M. (1981). Proc. Nutr. Soc. 40, 20A.Google Scholar
Bender, D. A., Magboul, B. I. & Wynick, D. (1982). Br. J. Nutr. (In the Press).Google Scholar
Bender, D. A. & Smith, W. R. D. (1978). Biochem. Soc. Trans. 6, 120.CrossRefGoogle Scholar
Bender, D. A. & Wynick, D. (1981). Br. J. Nutr. 45, 269.CrossRefGoogle Scholar
Brown, R. R., Rose, D. P., Leklem, J. E., Linkswiler, H. & Anand, R. (1975). Am. J. clin. Nutr. 28, 10.CrossRefGoogle Scholar
Carpenter, K. J. & Kodicek, E. (1950). Biochem. J. 46, 421.Google Scholar
Coursin, D. B. (1964). Am. J. clin. Nutr. 14, 56.CrossRefGoogle Scholar
Denckla, W. D. & Dewey, H. K. (1967). J. Lab. clin. Med. 69, 160.Google Scholar
Joseph, M. H. & Risby, D. (1975). Clinica chim. Acta 63, 197.CrossRefGoogle Scholar
Leklem, J. E., Brown, R. R., Rose, D. P. & Linkswiler, H. (1975). Am. J. clin. Nutr. 28, 535.CrossRefGoogle Scholar
Mason, M. & Gullekson, E. H. (1960). J. biol. Chem. 235, 1312.Google Scholar
Patnaik, S. K. & Sarangi, S. K. (1980). Cell Biol. int. Rep. 4, 471.CrossRefGoogle Scholar
Reddy, S. K., Reynolds, M. S. & Price, J. M. (1958). J. biol. Chem. 233, 691.CrossRefGoogle Scholar
Rose, D. P. &Adams, P. W. (1972). J. clin. Path. 25,252.CrossRefGoogle Scholar
Rose, D. P. & Braidman, I. (1971). Am. J. clin. Nutr. 24, 673.CrossRefGoogle Scholar
Salkeld, R. L., Knorr, K. & Korner, W. F. (1973). Clinica Chim. Acta 49, 195.CrossRefGoogle Scholar
Satoh, K. & Price, J. M. (1958). J. biol. Chem. 230, 781.CrossRefGoogle Scholar
Schuster, L., Bates, A. & Hirsch, C. A. (1978). Analyt. Biochem. 86, 648.CrossRefGoogle Scholar
Stanulovic, M. & Chaykin, S. (1971). Archs Biochem. Biophys. 145, 27.Google Scholar
Wien, E. M. (1978). Am. J. Clin. Nutr. 31, 1392.CrossRefGoogle Scholar