Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T07:09:25.223Z Has data issue: false hasContentIssue false

Effects of peroral alanine administration in lactating ewes with decreased availability of glucose

Published online by Cambridge University Press:  09 March 2007

Kjell Holtenius
Affiliation:
Department of Clinical Nutrition, Box 7036, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
Paul Holtenius
Affiliation:
Department of Cattle and Sheep Diseases, Box 7019, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The metabolic effects of a phlorizin-induced drainage of glucose were studied in six lactating ewes with or without peroral alanine drenches in a study of crossover design. Phlorizin gave rise to a small, but significant, elevation of plasma β-hydroxybutyrate. The plasma level of alanine decreased by about 30 % due to the phlorizin injections and alanine was negatively correlated to β-hydroxybutyrate. The plasma level of free fatty acids increased due to phlorizin. Plasma insulin and glucose concentrations were not significantly affected by phlorizin while glucagon level showed a small but significant increase. Peroral alanine drenches to phlorizin-treated ewes gave rise to a transitory elevation of alanine in plasma. The plasma level of free fatty acids was about 40 % lower in phlorizin-treated ewes receiving alanine and β-hydroxybutyrate tended to be lower (P < 0.08). We suggest that β-hydroxybutyrate, apart from its function as an oxidative fuel, might play an important role by limiting glucose oxidation and protein degradation in skeletal muscles during periods of negative energy balance in ruminants. Furthermore, it is suggested that alanine supplementation decreases lipolysis and ketogenesis in lactating ewes.

Type
Animal Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Amaral-Phillips, D. M., McGilliard, A. D., Lindberg, G. L., Veenhuizen, J. J. & Young, J. W. (1993) Effects of decreased availability of glucose for dairy cows. Journal of Dairy Science 76, 752761.CrossRefGoogle ScholarPubMed
Bergman, E. N. & Hogue, D. E. (1967) Glucose turnover and oxidation rates in lactating sheep. American Journal of Physiology 213, 13781384.CrossRefGoogle ScholarPubMed
Breukink, H. J. & Wensing, T. H. (1992). Disorders in the dairy cow as a consequence of production. In Proceedings of the 8th International Conference on Production Diseases in Farm Animals, pp. 123135. [Blaum, J. editor]. Berne, Switzerland: University of Berne.Google Scholar
Brockman, R. P. & Bergman, E. N. (1975) Effect of glucagon on plasma alanine and glutamine metabolism and hepatic gluconeogenesis in sheep. American Journal of Physiology 228, 16271633.CrossRefGoogle ScholarPubMed
Brockman, R. P., Bergman, E. N., Joo, P. K. & Manns, J. G. (1975) Effects of glucagon and insulin on net hepatic metabolism of glucose precursors in sheep. American Journal of Physiology 229, 13441350.CrossRefGoogle ScholarPubMed
Chi, L. M., Muller, J. & Schafer, M. (1973) Zum verhalten der freien Aminosauren bei subklinischer Ketose der Milchkuhe (Behaviour of free amino acids in blood plasma of cows with subclinical ketosis). Archiv für Experimentelle Veterinarmedizin 27, 583587.Google Scholar
Egan, A. R., McRay, J. C. & Lamb, C. S. (1983) Threonine metabolism in sheep. 1. Threonine catabolism and gluconeogenesis in mature Blackface wethers given poor quality hill herbage. British Journal of Nutrition 49, 373383.CrossRefGoogle ScholarPubMed
Felig, P. (1975) Amino acid metabolism in man. Annual Review of Biochemistry 44, 933955.CrossRefGoogle ScholarPubMed
Funovics, J., Roth, E., Muhlbacher, F., Schultz, F., Karner, J., Schultis, K., Ogris, E. & Fritsch, A. (1981) Alanin als stickstoffsparendes und glukoneogenetisches Substrat im postoperativen Zustand (Alanine as nitrogen sparing and gluconeogenic substrate in the postoperative state). Klinische Wochenschrift 59, 797802.CrossRefGoogle Scholar
Giudicelli, Y., Janvier, B., Nordmann, J. & Nordmann, R. (1976) Inhibition of free fatty acid release from the isolated rat epididymal fat cells by some natural occurring organic acids. Biomedicine 25, 376381.Google ScholarPubMed
Hedge, G. A., Coby, H. D. & Goodman, R. L. (1987) Clinical Endocrine Physiology 1st ed. Philadelphia: W. B. Saunders Co.Google Scholar
Heitmann, R. N. & Bergman, E. N. (1980) Integration of amino acid metabolism in sheep: effects of fasting and acidosis. American Journal of Physiology 239, E248E254.Google ScholarPubMed
Herdt, T. H. & Emery, R. R. (1992) Therapy of diseases of ruminant intermediary metabolism. Veterinary Clinics of North America: Food Animal Practice 8, 91106.Google ScholarPubMed
Horsburgh, T., Cannon, J. K. & Pitts, R. F. (1978) Action of phlorizin on luminal and antiluminal membranes of proximal cells of the kidney. American Journal of Physiology 234, F485F489.Google Scholar
Koeslag, J. H., Levinrad, L. I., Lochner, J. V. & Siven, A. A. (1985) Post-exercise ketosis in post-prandial exercise: effect of glucose and alanine ingestion in humans. Journal of Physiology 358, 395403.CrossRefGoogle ScholarPubMed
Kuhara, T., Ikeda, S., Ohneda, A. & Sasaki, Y. (1991) Effects of intravenous infusion of 17 amino acids on the secretion of GH, glucagon, and insulin in sheep. American Journal of Physiology 260, E21E26.Google ScholarPubMed
Ozand, P. T., Reed, W. D., Hawkins, R. L., Stevenson, J. H., Tildon, J. T. & Cornblath, M. (1977). Effect of L- alanine infusion on gluconeogenesis and ketogenesis in the rat in vivo. Biochemical Journal 170, 583591.CrossRefGoogle Scholar
Radcliffe, A. G., Wolfe, R. R., Colpoys, M. F., Muhlbacher, F. & Wilmore, D. W. (1983) Ketone-glucose interaction in fed, fasted, and fasted-infected sheep. American Journal of Physiology 244, R667R675.Google ScholarPubMed
Reed, D. W., Baab, P. J., Hawkins, R. L. & Ozand, P. T. (1984) A double-isotope method for the measurement of ketone-body turnover in the rat. Biochemical Journal 219, 1524.CrossRefGoogle ScholarPubMed
Reynolds, C. K. & Huntington, G. B. (1988) Partition of portal-drained visceral net flux in beef steers. Net flux of volatile fatty acids, D-β-hydroxybutyrate and L-lactate across stomach and post-stomach tissues. British Journal of Nutrition 60, 553562.CrossRefGoogle ScholarPubMed
Reynolds, C. K. & Tyrrell, H. F. (1991) Effects of mesenteric vein L-alanine infusion on liver metabolism in beef heifers fed on diets differing in forage:concentrate ratio. British Journal of Nutrition 66, 437450.CrossRefGoogle ScholarPubMed
Robinson, A. M. & Williamson, D. H. (1980) Physiological roles of ketone bodies as substrates and signals in mammal tissues. Physiological Reviews 60, 143187.CrossRefGoogle Scholar
Rossini, A. A., Aoki, T. T., Ganda, A. O., Soeldner, J. S. & Cahill, G. F. (1975) Alanine-induced amino acid interrelationships. Metabolism 24, 11851192.CrossRefGoogle ScholarPubMed
Sherwin, R. S., Hendler, R. G. & Felig, P. (1975) Effect of ketone infusions on amino acid and nitrogen metabolism in man. Journal of Clinical Investigation 55, 13821390.CrossRefGoogle ScholarPubMed
Spörndly, R. (1995). Fodertabeller för idisslare (Feeding Tables for Ruminants) Uppsala: Swedish University of Agricultural Sciences.Google Scholar
Thompson, J. R. & Wu, G. (1991) The effect of ketone bodies on nitrogen metabolism in skeletal muscle (review). Comparative Biochemistry and Physiology 100B, 209219.Google Scholar
Umpleby, A. M., Chubb, D., Boroujerdi, M. A. & Sonksen, P. H. (1988) The effect of ketone bodies on leucine and alanine metabolism in dogs. Clinical Science 74, 4148.CrossRefGoogle ScholarPubMed
Umpleby, A. M., Scobie, I. N., Boroujerdi, M. A. & Sönksen, P. H. (1995) The effect of starvation on leucine, alanine and glucose metabolism in obese subjects. European Journal of Clinical Investigation 25, 619626.CrossRefGoogle ScholarPubMed
Weik, H. & Zander, H. D. (1975) Der Einfluss von Alanine auf die Acetonämie der Milchkuh und auf die phlorizin-induzierte Acetonämie des Schafes (Effect of alanine on acetonaemia in the dairy cow and on phlorizin-induced acetonaemia in the sheep). Zentralblat für Veterinärmedizin A22, 520523.Google Scholar
Williamson, D. H. (1985). D-Alanine: determination with alanine dehydrogenase. In Methods of Enzymatic Analysis, Vol. 8, pp. 341344 [Bergmeyer, H. U. editor]. New York: Academic Press.Google Scholar
Wu, J. R. & Thompson, J. R. (1988) Effect of ketone bodies on alanine and glutamine metabolism in chick skeletal muscle. Biochemical Journal 225, 139144.CrossRefGoogle Scholar
Zammit, V. A. (1981) Intrahepatic regulation of ketogenesis. Trends in Biochemical Science 6, 4649.CrossRefGoogle Scholar
Zander, H. D. (1976) Die kunstliche Erzeugung der Ketosis beim laktierenden Milchschaf durch Phlorizininfusion (Artificial induction of ketosis in lactating ewes by infusion of phlorizin). Berliner und Munchener Tierarztliche Wochenschrift 89, 57.Google ScholarPubMed