Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T11:41:39.588Z Has data issue: false hasContentIssue false

The effects of severe zinc deficiency on protein turnover in muscle and thymus

Published online by Cambridge University Press:  09 March 2007

R. Giugliano
Affiliation:
Nutrition Research Unit, Department of Hunian Nutrition, London School of Hygieneand Tropical Medicine, 4 St Pancras Way, London NW1 2PE
D.J. Millward
Affiliation:
Nutrition Research Unit, Department of Hunian Nutrition, London School of Hygieneand Tropical Medicine, 4 St Pancras Way, London NW1 2PE
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Measurements have been made of protein turnover, RNA and DNA in thymus and skeletal muscle from rats fed on a zinc-deficient diet (ZD) for 10 and 17 d, in pair-fed controls (CI) and in muscle from rats fed on the ZD diet for 24 d and then fed on restricted amounts of the deficient diet with (RIZS) or without (RIZD) Zn supplementation, for 8 d.

2. In thymus the ZD diet induced a loss of DNA and protein which was not observed with the CI rats. Accumulation of RNA was less affected but protein synthesis was reduced.

3. In muscle the accumulation of DNA and protein was slowed by the ZD diet, particularly in glycolytic muscles compared with oxidative muscles, and Zn supplementation increased DNA and protein.

4. Protein synthesis and RNA concentrations were reduced in the ZD rats compared with the CI rats, but Zn supplementation at constant restricted food intake did not increase protein synthesis. Muscle protein synthesis per unit RNA varied markedly in the ZD rats after 10 d when the characteristic cycling of the food intakes and body-weight was most pronounced, the highest values being observed in the anabolic phase of the cycle although these were less than values for well-fed controls. The variability was inversely correlated with the plasma Zn levels. The extent of the variability was much less after 17 d and was not apparent in the food-restricted ZD animals.

5. Protein degradation in muscle, assessed as the difference between overall and net protein synthesis, was faster in the ZD rats compared with the CI rats and fluctuated considerably, partly accounting for the cyclic changes in muscle after 10 d, and was entirely responsible after 17 d. The concentration of muscle-free 3-methylhistidine and its urinary excretion rate indicated inconsistent results which could not be satisfactorily interpreted.

6. Plasma insulin was reduced in the ZD rats compared with the CI rats and was insensitive to food intake in contrast to urinary corticosterone excretion which was inversely correlated with the cyclic changes in body-weight and food intake. Furthermore, adrenalectomized rats exhibited increased mortality and reduced cycling of body-weight and food intake.

7. Thus Zn deficiency impairs growth by a combination of (a) reduced food intake, (b) a reduced anabolic response to food due to a reduced capacity for protein synthesis and reduced activation of protein synthesis, possibly reflecting impaired insulin secretion, and (c) an increased catabolic response to the reduced intake in which corticosterone may play a role.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Bailey, N. T. J. (1981). Statistical Methods in Biology, 2nd ed., pp. 4351. London: Hodder & Stoughton.Google Scholar
Chesters, J. K. & Will, M. (1978). British Journal of Nutrition 39, 375382.Google Scholar
Chvapil, M., Zukowski, C. F., Hattler, B. G., Stankova, L., Montgomery, D., Carlson, E. C. & Ludwig, J. C. (1976). In Trace Elements in Human Health and Disease, pp. 269281 [Prasad, A. S., editor]. New York: Academic Press.Google Scholar
Cotellesa, L., Emery, P. W. & Rennie, M. J. (1983). Proceedings of the Nutrition Society 42, 26A.Google Scholar
Dodson, M. V., Allen, R. E. & Hossner, K. L. (1985). Endocrinology 117, 23572363.CrossRefGoogle Scholar
Dreosti, I. E. & Record, I. R. (1978). British Journal of Nutrition 40, 133137.Google Scholar
Emdin, S. O., Dodson, G. G., Cutfield, J. M. & Cutfield, S. M. (1980). Diabetologia 19, 174182.Google Scholar
Few, J. D. & Cashmore, G. C. (1971). Annals of clinical Biochemistry 8, 206209.Google Scholar
Figlewicz, D. P., Heldt, A., Forhan, S. E. & Grodsky, G. M. (1981). Endocrinology 108, 730732.CrossRefGoogle Scholar
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). Biochemical Journal 192, 719723.Google Scholar
Garlick, P. J., Millward, D. J. & James, W. P. T. (1973). Biochemical Journal 136, 935945.Google Scholar
Giugliano, R. & Millward, D. J. (1984). British Journal of Nutrition 52, 545560.Google Scholar
Heard, C. R. C. & Turner, M. R. (1967). Diabetes 16, 96107.Google Scholar
Herbert, V., Lau, K. S., Cottlieb, C. W. & Bleicher, S. J. (1965). Journal of Clinical Endocrinology and Metabolism 25, 13751384.Google Scholar
Hsu, J. M. & Rubenstein, B. (1982). Journal of Nutrition 112, 461467.Google Scholar
Jepson, M. M., Pell, J. M., Bates, P. C. & Millward, D. J. (1986). Biochemical Journal 235, 329336.CrossRefGoogle Scholar
Kley., H. K., Herberg, L. & Kruskemper, H. L. (1976). Journal of steroid Biochemistry 7, 381385.Google Scholar
Li, J. B. & Wassner, S. J. (1984). American Journal of Physiology 9, E32E37.Google Scholar
Lowell, B. B., Ruderman, N. B. & Goodman, M. N. (1986). Biochemical Journal 234, 237240.CrossRefGoogle Scholar
Ludwig, J. D. & Chvapil, M. (1980). Journal of Nutrition 110, 945953.Google Scholar
Lundholm, K., Edstrom, S., Ekman, L., Karlberg, I., Walker, P. & Schersten, T. (1981). Clinical Science 60, 319326.Google Scholar
Mego, J. L. (1976). Journal of Biochemistry of Pharmacology 25, 753756.Google Scholar
Mills, C. F., Quarterman, J., Chesters, J. K., Williams, R. B. & Dalgarno, A. C. (1969). American Journal of Clinical Nutrition 22, 12401248.Google Scholar
Millward, D. J. & Bates, P. C. (1983). Biochemical Journal 214, 607615.Google Scholar
Millward, D. J., Bates, P. C., Brown, J. G., Cox, M., Giugliano, R., Jepson, M. & Pell, J. M. (1985). Progress in Clinical and Biological Research 180, 531542.Google Scholar
Millward, D. J., Garlick, P. J., Nnanyelugo, D. O. & Waterlow, J. C. (1976). Biochemical Journal 156, 185188.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J., Stewart, R. J. C., Nnanyelugo, D. O. & Waterlow, J. C. (1975). Biochemical Journal 150, 235243.Google Scholar
Millward, D. J., Nnanyelugo, D. O., James, W. P. T. & Garlick, P. J. (1974). British Journal of Nutrition 32, 127142.CrossRefGoogle Scholar
Millward, D. J., Odedra, B. & Bates, P. C. (1983). Biochemical Journal 216, 583585.Google Scholar
Millward, D. J. & Waterlow, J. C. (1978). Federation Proceedings 37, 22832290.Google Scholar
O'Leary, M. J., McClain, C. J. & Hegarty, V. J. (1979). British Journal of Nutrition 42, 487495.Google Scholar
Odedra, B. R., Bates, P. C. & Millward, D. J. (1983). Biochemical Journal 214, 617627.Google Scholar
Odedra, B. R., Dalal, S. S. & Millward, D. J. (1982). Biochemical Journal 202, 363368.Google Scholar
Odedra, B. R. & Millward, D. J. (1982). Biochemical Journal 204, 663672.Google Scholar
Oner, G., Bhaumick, B. & Bala, R. M. (1984). Endocrinology 114, 18601863.Google Scholar
Prasad, A. S. (editor) (1978). In Trace Elements and Iron in Human Metabolism, pp. 251–246. New York, London: Plenum Book Company.Google Scholar
Prasad, A. S. & Oberleas, D. (1973). Journal of Laboratory and Clinical Medicine 82, 461466.Google Scholar
Rennie, M. J., Edwards, R. H. T., Krywawych, S., Davies, C. T. M., Halliday, D., Waterlow, J. C. & Millward, D. J. (1981). Clinical Science 61, 627639.Google Scholar
Rennie, M. J. & Millward, D. J. (1983). Clinical Science 65, 217225.Google Scholar
Robinson, L. K. & Hurley, L. S. (1981). Journal of Nutrition 111, 869877.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed., p. 194. Iowa: The Iowa State University Press.Google Scholar
Southon, S., Livesey, G., Gee, J. M. & Johnson, I. T. (1985). British Journal of Nutrition 53, 595603.Google Scholar
Suwarnasarn, A., Wallwork, J. C., Lykken, G. I., Low, F. N. & Sandstead, H. H. (1982). Journal of Nutrition 112, 13201328.Google Scholar
Terhune, M. W. & Sandstead, H. H. (1972). Science 177, 6869.CrossRefGoogle Scholar
Todd, W. R., Elvehjhem, C. A. & Hart, E. B. (1934). American Journal of Physiology 107, 146156.Google Scholar
Underwood, E. J. (1977). Trace Elements In Human and Animal Nutrition, 4th ed., New York: Academic Press.Google Scholar
Vallee, B. L. & Falchuk, K. H. (1981). In Trace Element Deficiency, pp. 185197 [Fowden, L., Carton, G. A. and Mills, C. F., editors]. London: The Royal Society.Google Scholar
Wallwork, J. C. & Duerre, J. A. (1985). Journal of Nutrition 115, 252262.Google Scholar
Wallwork, J. C., Fosmire, G. J. & Sandstead, H. H. (1981). British Journal of Nutrition 45, 127136.Google Scholar
Wolman, S. L., Anderson, G. H., Marliss, E. B. & Jeejeebhoy, K. N. (1979). Gastroenterology 76, 458467.Google Scholar
Young, V. R. & Munro, H. N. (1978). Federation Proceedings 37, 22912297.Google Scholar