Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T01:09:39.789Z Has data issue: false hasContentIssue false

Effects of supplemental dietary energy on leucine metabolism in sheep*

Published online by Cambridge University Press:  24 July 2007

Nissen STEVEN
Affiliation:
Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
Ostaszewski PIOTR
Affiliation:
Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Mixed-breed wethers (40–50 kg), 9 months old, were maintained on high-energy (HED) and low-energy (LED) diets for 2 weeks.

2. After a 15 h fast, a primed-dose constant infusion of L-[U-14C]leucine and α-[4,5-3H]ketoisocaproate (KIC) was given.

3. After 2 h, plasma samples were taken and plasma-specific radioactivities of I4C- and 3H-labelled leucine and KIC were measured and analysed by using an open two-pool model.

4. Less than 20% of the total leucine-C entering the circulation was converted to the KIC pool, and 42% of the KIC was converted back to the leucine pool; transamination of the leucine to KIC and reamination of KIC to leucine was much less than in other species.

5. Additional dietary energy resulted in a decrease in tissue protein synthesis, leucine oxidation and interconversion of leucine and KIC. Total leucine-C entry was also lower in sheep given HED, which was most likely due to a suppression of endogenous proteolysis.

6. Plasma glucagon concentration was significantly higher (P < 0.05) in sheep given LED compared with those given HED. The concentration of glucagon was closely correlated in all treatments with the leucine-C entry (proteolysis + absorbed leucine) and also with KIC-C exit (oxidation).

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Ballard, F. J., Filsell, O. H. & Jarrett, I. G. (1976). Metabolism 25, 415418.CrossRefGoogle Scholar
Bell, A. W., Gardner, J. W., Manson, W. & Thompson, G. E. (1975). British Journal of Nutrition 33, 207217.CrossRefGoogle Scholar
Brockman, R. P., Bergman, E. N., Joo, P. K. & Manns, J. G. (1975). American Journal of Physiology 229, 13441350.CrossRefGoogle Scholar
Busboom, J. R., Merkel, R. A. S. & Bergen, W. G. (1984). Journal of Animal Science 59, Suppl. 1, 649.Google Scholar
Coward, B. J. (1979). Ruminant muscle metabolism. PhD thesis, University of Nottingham.Google Scholar
Dean, R. T. (1980). In Biochemistry of Cellular Regulation, pp. 101122 [Ashwell, G. editor]. Boca Raton, Florida: CRC Press.Google Scholar
Fagan, J. M. & Tischler, M. E. (1982). Federation Proceedings 41, 866.Google Scholar
Faloona, G. & Unger, R. (1974). In Methods of Hormone Radioimmunoassay, pp. 287300 [Jaffe, B. and Behrman, H., editors]. New York: Academic Press.Google Scholar
Frick, G. P. & Goodman, H. M. (1979). Federation Proceedings 38, 947.Google Scholar
Gillim, S. E., Paxton, R., Gook, G. & Harris, R. A. (1983). Biochemical and Biophysical Research Communications 111, 7481.CrossRefGoogle Scholar
Goldberg, A. L. & Chang, T. W. (1978). Federation Proceedings 37, 2301.Google Scholar
Haymond, M. W. & Miles, J. M. (1982). Diabetes 31, 8689.CrossRefGoogle Scholar
Helland, S. J. (1984). Utilization of glucose and sucrose by the weanling pig. PhD dissertation, Iowa State University.Google Scholar
Hughes, W. A. & Halestrap, A. P. (1981). Biochemical Journal 196, 459469.CrossRefGoogle Scholar
Hutson, S. M., Cree, T. C. & Harper, A. E. (1978). Journal of Biological Chemistry 253, 81268133.CrossRefGoogle Scholar
Ichihara, A., Noda, C. & Ogawa, K. (1973). Advances in Enzyme Regulation 11, 155166.CrossRefGoogle Scholar
Kramer, G. & Hardesty, B. (1980). In Cell Biology, vol. 4, pp. 69105 [Goldstein, L. and Prescott, D. M., editors]. New York: Academic Press.Google Scholar
Lindsay, D. B. (1980). Proceedings of the Nutrition Society 39, 5359.CrossRefGoogle Scholar
Lindsay, D. B., Steel, J. W. & Buttery, P. J. (1977). Proceedings of the Nutrition Society 36, 33A.Google Scholar
Matthews, D. E., Bier, D. M., Rennie, M. J., Edwards, R. H. T., Halliday, D., Millward, D. J. & Clugston, G. A. (1981). Science 214, 11291131.CrossRefGoogle Scholar
Miller, L. L. (1976). Diabetes 25, 865871.CrossRefGoogle ScholarPubMed
Nissen, S. & Haymond, M. W. (1981). American Journal of Physiology 241, E72E75.Google Scholar
Nissen, S., Van Huysen, C. V. & Haymond, M. W. (1982). Journal of Chromatography 232, 170175.CrossRefGoogle Scholar
Odyssey, R. (1980). Biochemical Journal 192, 155163.CrossRefGoogle Scholar
Rudiger, H. W., Langenbeck, U. & Goedde, H. W. (1972). Biochemical Journal 126, 445456.CrossRefGoogle Scholar
Shimizu, S., Inoue, K., Tani, Y. & Yamada, H. (1979). Analytical Biochemstry 98, 341345.CrossRefGoogle Scholar
Snell, K. & Duff, D. A. (1977). Biochemical Journal 162, 399403.CrossRefGoogle Scholar
Teleni, E., Annison, E. F., Lindsay, D. B. & Mackenzie, J. (1983). Proceedings of the Nutrition Society 42, 92A.Google Scholar
Trenkle, A. (1970). Journal of Nutrition 100, 13231330.CrossRefGoogle Scholar
Trenkle, A. (1976). Journal of Animal Science 43, 10351043.CrossRefGoogle Scholar
Triebwasser, K. C. & Freedland, R. A. (1977). Biochemical and Biophysical Research Communications 76, 11591165.CrossRefGoogle Scholar
Trinder, P. (1969). Annals of Clinical Biochemistry 6, 2427.CrossRefGoogle Scholar
Veerkamp, J. H. & Wagenmakers, A. J. M. (1981). Metabolism and Clinical Implications of Branched-chain Amino and Ketoacids, pp. 163168 [Walser, M. and Williamson, J. R. editors]. Amsterdam: Elsevier North-Holland.Google Scholar
Wallace, A. L. C. & Ferguson, K. A. (1963). Journal of Endocrinology 26, 259263.CrossRefGoogle Scholar